Skip to main content
Log in

Agglomeration of wet particles in dense granular flows

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In order to get insight into the wet agglomeration process, we numerically investigate the growth of a single granule inside a dense flow of an initially homogeneous distribution of wet and dry particles. The simulations are performed by means of the discrete element method and the binding liquid is assumed to be transported by the wet particles, which interact via capillary and viscous force laws. The granule size is found to be an exponential function of time, reflecting the conservation of the amount of liquid and the decrease of the number of available wet particles inside the flow during agglomeration. We analyze this behavior in terms of the accretion and erosion rates of wet particles for a range of different values of material parameters such as mean particle size, size polydispersity, friction coefficient and liquid viscosity. In particular, we propose a phase diagram of the granule growth as a function of the mean primary particle diameter and particle size span, which separates the parametric domain in which the granule grows from the domain in which the granule does not survive.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Iveson, J.D. Litster, K. Hapgood, B.J. Ennis, Powder Technol. 117, 3 (2001)

    Google Scholar 

  2. S.H. Chien, G. Carmona, L.I. Prochnow, E.R. Austin, J. Environ. Qual. 32, 1911 (2003)

    Google Scholar 

  3. A. Barkouti, E. Rondet, M. Delalonde, T. Ruiz, J. Food Eng. 111, 234 (2012)

    Google Scholar 

  4. E. Rondet, M. Delalonde, T. Ruiz, J.P. Desfoursb, Chem. Eng. J. 164, 376 (2010)

    Google Scholar 

  5. A. Nosrati, J. Addai-Mensah, D.J. Robinson, Hydrometallurgy 125-126, 90 (2012)

    Google Scholar 

  6. K.V. Sastry, P. Dontula, C. Hosten, Powder Technol. 130, 231 (2003)

    Google Scholar 

  7. R. Aguado, S. Roudier, L. Delagado (Editors), Best available techniques (BAT) reference document for iron and steel production (Joint Research Centre of the European Commission, Publications Office of the European Union, Luxembourg, 2013)

  8. G.M. Walker, Handb. Powder Technol. 11, 219 (2007) (Granulation

    Google Scholar 

  9. K. Saleh, P. Guigon, Handb. Powder Technol. 11, 323 (2007) (Granulation

    Google Scholar 

  10. P. Suresh, I. Sreedhar, R. Vaidhiswaran, A. Venugopal, Chem. Eng. J. 328, 785815 (2017)

    Google Scholar 

  11. S. Herminghaus, Adv. Phys. 54, 221 (2005)

    ADS  Google Scholar 

  12. J. Litster, B. Ennis, The Science and Engineering of Granulation Processes, Vol. 15 (Springer, Netherlands, 2014)

  13. C. Liao, S. Hsiau, S. Wen, Adv. Powder Technol. 27, 1265 (2016)

    Google Scholar 

  14. S. Iveson, J. Litster, AIChE J. 44, 1510 (1998)

    Google Scholar 

  15. X. Xiao, Y. Tan, H. Zhang, R. Deng, S. Jiang, Powder Technol. 314, 182 (2017)

    Google Scholar 

  16. B. Alchikh-Sulaiman, M. Alian, F. Ein-Mozaffari, A. Lohi, S.R. Upreti, Particuology 25, 133 (2016)

    Google Scholar 

  17. A. Bouwman, M. Henstra, D. Westerman, J. Chung, Z. Zhang, A. Ingram, J. Seville, H. Frijlink, Int. J. Pharm. 290, 129 (2005)

    Google Scholar 

  18. J. Degreve, J. Baeyens, M.V. de Velden, S.D. Laet, Powder Technol. 163, 188 (2006)

    Google Scholar 

  19. J.D. Osborne, R.P. Sochon, J.J. Cartwright, D.G. Doughty, M.J. Hounslow, A.D. Salman, Chem. Eng. Res. Des. 89, 553 (2011)

    Google Scholar 

  20. S.K. Pawar, F. Henrikson, G. Finotello, J.T. Padding, N.G. Deen, A. Jongsma, F. Innings, J.H. Kuipers, Powder Technol. 300, 157 (2016)

    Google Scholar 

  21. R. Pashminehazar, A. Kharaghani, E. Tsotsas, Powder Technol. 300, 46 (2016)

    Google Scholar 

  22. B.J. Ennis, G. Tardos, R. Pfeffer, Powder Technol. 65, 257 (1991)

    Google Scholar 

  23. F. Stepánek, P. Rajniak, C. Mancinelli, R. Chern, R. Ramachandran, Powder Technol. 189, 376 (2009)

    Google Scholar 

  24. A. Hassanpour, M. Pasha, L. Susana, N. Rahmanian, A.C. Santomaso, M. Ghadiri, Powder Technol. 238, 50 (2013)

    Google Scholar 

  25. N. Rahmanian, A. Naji, M. Ghadiri, Chem. Eng. Res. Des. 89, 512 (2011)

    Google Scholar 

  26. B.J. Ennis, Powder Technol. 88, 203 (1996)

    Google Scholar 

  27. M. Butensky, D. Hyman, Ind. Eng. Chem. Fundam. 10, 212 (1971)

    Google Scholar 

  28. K.E. Ileleji, Y. Li, R.K. Ambrose, P.H. Doane, Powder Technol. 300, 126 (2016)

    Google Scholar 

  29. R. Ramachandran, J.M.H. Poon, C.F. Sanders, T. Glaser, C.D. Immanuel, F.J. Doyle, J.D. Litster, F. Stepanek, F.Y. Wang, I.T. Cameron, Powder Technol. 188, 89 (2008)

    Google Scholar 

  30. J.P. Pan, T.J. Wang, J.J. Yao, Y. Jin, Powder Technol. 162, 50 (2006)

    Google Scholar 

  31. R. Spurling, J. Davidson, D. Scott, Chem. Eng. Res. Des. 79, 51 (2001)

    Google Scholar 

  32. F. Wang, I. Cameron, Powder Technol. 179, 2 (2007)

    Google Scholar 

  33. J.M.N.T. Gray, J. Fluid Mech. 441, 1 (2001)

    ADS  MathSciNet  Google Scholar 

  34. C. Thornton, Z. Ning, Powder Technol. 99, 154 (1998)

    Google Scholar 

  35. L.X. Liu, J.D. Litster, S.M. Iveson, B.J. Ennis, AIChE J. 46, 529 (2000)

    Google Scholar 

  36. S. Iveson, J. Beathe, N. Page, Powder Technol. 127, 149 (2002)

    Google Scholar 

  37. M. Ghadiri, A.D. Salman, M. Hounslow, A. Hassanpour, D.W. York, Chem. Eng. Res. Des. 89, 499 (2011)

    Google Scholar 

  38. J. Rojek, S. Nosewicz, M. Mazdziarz, P. Kowalczyk, K. Wawrzyk, D. Lumelskyj, Procedia Eng. 177, 263 (2017)

    Google Scholar 

  39. GDR-MiDi, Eur. Phys. J. E 14, 341 (2004)

    Google Scholar 

  40. K. Kamrin, D.L. Henann, Soft Matter 11, 179 (2015)

    ADS  Google Scholar 

  41. L. Amarsid, J.Y. Delenne, P. Mutabaruka, Y. Monerie, F. Perales, F. Radjai, Phys. Rev. E 96, 012901 (2017)

    ADS  Google Scholar 

  42. M.A. Behjani, N. Rahmanian, N.F. bt Abdul Ghani, A. Hassanpour, Adv. Powder Technol. 28, 2456 (2017)

    Google Scholar 

  43. I. Govender, Miner. Eng. 92, 168 (2016)

    Google Scholar 

  44. R. Yang, A. Yu, L. McElroy, J. Bao, Powder Technol. 188, 170 (2008)

    Google Scholar 

  45. J. Mellmann, Powder Technol. 118, 251 (2001)

    Google Scholar 

  46. G. Lian, C. Thornton, M. Adams, J. Colloid Interface Sci. 161, 138 (1993)

    ADS  Google Scholar 

  47. M. Scheel, R. Seemann, M. Brinkmann, M.D. Michiel, A. Sheppard, S. Herminghaus, J. Phys.: Condens. Matter 20, 494236 (2008)

    Google Scholar 

  48. C. Willett, M. Adans, S. Johnson, J. Seville, Langmuir 16, 9396 (2000)

    Google Scholar 

  49. J.Y. Delenne, V. Richefeu, F. Radjai, J. Fluid Mech. 762, R5 (2015)

    Google Scholar 

  50. F. Radjai, F. Dubois, Discrete-Element Modeling of Granular Materials (Wiley-Iste, 2011)

  51. V. Richefeu, F. Radjai, M.S.E. Youssoufi, Eur. Phys. J. E 21, 359 (2007)

    Google Scholar 

  52. I. Talu, G.I. Tardos, M.I. Khan, Powder Technol. 110, 59 (2000)

    Google Scholar 

  53. E.L. Chan, K. Washino, G.K. Reynolds, B. Gururajan, M.J. Hounslow, A.D. Salman, Powder Technol. 300, 92 (2016)

    Google Scholar 

  54. P. Lau, M. Kind, Powder Technol. 300, 28 (2016)

    Google Scholar 

  55. S. Sarkar, B. Chaudhuri, Asian J. Pharm. Sci. 13, 220 (2018)

    Google Scholar 

  56. D. Barrasso, A. Tamrakar, R. Ramachandran, Chem. Eng. Sci. 119, 319 (2014)

    Google Scholar 

  57. V. Richefeu, M.S. El Youssoufi, E. Azema, F. Radjai, Powder Technol. 190, 258 (2009)

    Google Scholar 

  58. H. Matuttis, S. Luding, H. Herrmann, Powder Technol. 109, 278 (2000)

    Google Scholar 

  59. C. Thornton, Geotechnique 50, 43 (2000)

    Google Scholar 

  60. F. Radjai, I. Preechawuttipong, R. Peyroux, Cohesive granular texture, in Continuous and Discontinuous Modelling of Cohesive Frictional Materials, edited by P. Vermeer, S. Diebels, W. Ehlers, H. Herrmann, S. Luding, E. Ramm (Springer Verlag, Berlin, 2001) pp. 148--159

  61. H.J. Herrmann, S. Luding, Contin. Mech. Thermodyn. 10, 189 (1998)

    ADS  MathSciNet  Google Scholar 

  62. D. Shi, J. McCarthy, Powder Technol. 184, 64 (2008)

    Google Scholar 

  63. B. Mohan, C. Kloss, J. Khinast, S. Radl, Powder Technol. 264, 377 (2014)

    Google Scholar 

  64. A. Leonardi, M. Cabrera, F.K. Wittel, R. Kaitna, M. Mendoza, W. Wu, H.J. Herrmann, Phys. Rev. E 92, 052204 (2015)

    ADS  Google Scholar 

  65. K. Melnikov, R. Mani, F.K. Wittel, M. Thielmann, H.J. Herrmann, Phys. Rev. E 92, 022206 (2015)

    ADS  Google Scholar 

  66. G. Lefebvre, P. Jop, Phys. Rev. E 8, 032205 (2013)

    ADS  Google Scholar 

  67. J. Duran, A. Reisinger, P. de Gennes, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials, Partially Ordered Systems Series (Springer, New York, 1999)

  68. V. Richefeu, M. El Youssoufi, F. Radjai, Phys. Rev. E 73, 051304 (2006)

    ADS  Google Scholar 

  69. T-Trung. Vo, P. Mutabaruka, J.-Y. Delenne, S. Nezamabadi, F. Radjai, EPJ Web of Conferences 140, 08021 (2017)

    Google Scholar 

  70. J. Schäfer, S. Dippel, D.E. Wolf, J. Phys. I France 6, 5 (1996)

    Google Scholar 

  71. S. Dippel, G.G. Batrouni, D.E. Wolf, Phys. Rev. E 56, 3645 (1997)

    ADS  Google Scholar 

  72. S. Luding, Collisions and contacts between two particles, in Physics of Dry Granular Media, NATO Science Series E, Vol. 350, edited by H.J. Herrmann, J.P. Hovi, S. Luding (Springer Netherlands, Dordrecht, 1998) p. 285

  73. V. Richefeu, M.S. El Youssoufi, F. Radjaï, in Theoretical and Numerical Unsaturated Soil Mechanics (Springer, 2007) pp. 83--91

  74. T-Trung. Vo, P. Mutabaruka, S. Nezamabadi, J.Y. Delenne, E. Izard, R. Pellenq, F. Radjai, Mech. Res. Commun. 92, 1 (2018)

    Google Scholar 

  75. F. Radjai, V. Richefeu, Philos. Trans. R. Soc. A 367, 5123 (2009)

    ADS  Google Scholar 

  76. S. Khamseh, J.N. Roux, F.M.C. Chevoir, Phys. Rev. E 92, 022201 (2015)

    ADS  Google Scholar 

  77. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Martinus Nijhoff Publishers, 1983)

  78. C. Voivret, F. Radjai, J.Y. Delenne, M.S.E. Youssoufi, Phys. Rev. E 76, 021301 (2007)

    ADS  Google Scholar 

  79. C. Voivret, F. Radjai, J.Y. Delenne, M.S.E. Youssoufi, Phys. Rev. Lett. 102, 178001 (2009)

    ADS  Google Scholar 

  80. P.Y. Liu, R.Y. Yang, A.B. Yu, Granular Matter 15, 427 (2013)

    Google Scholar 

  81. S.A. de Koster, K. Pitt, J.D. Litster, R.M. Smith, Powder Technol. 355, 514 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Nezamabadi.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trung Vo, T., Nezamabadi, S., Mutabaruka, P. et al. Agglomeration of wet particles in dense granular flows. Eur. Phys. J. E 42, 127 (2019). https://doi.org/10.1140/epje/i2019-11892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11892-9

Keywords

Navigation