Skip to main content
Log in

Non-Markovian barrier crossing with two-time-scale memory is dominated by the faster memory component

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We investigate non-Markovian barrier-crossing kinetics of a massive particle in one dimension in the presence of a memory function that is the sum of two exponentials with different memory times, \( \tau_{{1}}^{}\) and \( \tau_{{2}}^{}\) . Our Langevin simulations for the special case where both exponentials contribute equally to the total friction show that the barrier-crossing time becomes independent of the longer memory time if at least one of the two memory times is larger than the intrinsic diffusion time. When we associate memory effects with coupled degrees of freedom that are orthogonal to a one-dimensional reaction coordinate, this counterintuitive result shows that the faster orthogonal degrees of freedom dominate barrier-crossing kinetics in the non-Markovian limit and that the slower orthogonal degrees become negligible, quite contrary to the standard time-scale separation assumption and with important consequences for the proper setup of coarse-graining procedures in the non-Markovian case. By asymptotic matching and symmetry arguments, we construct a crossover formula for the barrier crossing time that is valid for general multi-exponential memory kernels. This formula can be used to estimate barrier-crossing times for general memory functions for high friction, i.e. in the overdamped regime, as well as for low friction, i.e. in the inertial regime. Typical examples where our results are important include protein folding in the high-friction limit and chemical reactions such as proton-transfer reactions in the low-friction limit.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Kramers, Physica 7, 284 (1940)

    ADS  MathSciNet  Google Scholar 

  2. D. Chandler, J. Stat. Phys. 42, 49 (1986)

    ADS  Google Scholar 

  3. B.J. Berne, M. Borkovec, J.E. Straub, J. Phys. Chem. 92, 3711 (1988)

    Google Scholar 

  4. P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)

    ADS  Google Scholar 

  5. R. Best, G. Hummer, Phys. Rev. Lett. 96, 228104 (2006)

    ADS  Google Scholar 

  6. R. Zwanzig, Phys. Rev. 124, 983 (1961)

    ADS  Google Scholar 

  7. H. Mori, Prog. Theor. Phys. 33, 423 (1965)

    ADS  Google Scholar 

  8. G. Jung, M. Hanke, F. Schmid, J. Chem. Theor. Comput. 13, 2481 (2017)

    Google Scholar 

  9. G. Jung, M. Hanke, F. Schmid, Soft Matter 14, 9368 (2018)

    ADS  Google Scholar 

  10. H. Meyer, T. Voigtmann, T. Schilling, J. Chem. Phys. 147, 214110 (2017)

    ADS  Google Scholar 

  11. H. Meyer, T. Voigtmann, T. Schilling, J. Chem. Phys. 150, 174118 (2019)

    ADS  Google Scholar 

  12. R. Rey, E. Guardia, J. Phys. Chem. 96, 4712 (1992)

    Google Scholar 

  13. R.G. Mullen, J.-E. Shea, B. Peters, J. Chem. Theor. Comput. 10, 659 (2014)

    Google Scholar 

  14. R.O. Rosenberg, B.J. Berne, D. Chandler, Chem. Phys. Lett. 75, 162 (1980)

    ADS  Google Scholar 

  15. D. de Sancho, A. Sirur, R.B. Best, Nat. Commun. 5, 4307 (2014)

    ADS  Google Scholar 

  16. J.O. Daldrop, J. Kappler, F.N. Brünig, R.R. Netz, Proc. Natl. Acad. Sci. U.S.A. 115, 5169 (2018)

    Google Scholar 

  17. T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 74, 1250 (1995)

    ADS  Google Scholar 

  18. D. Lesnicki, R. Vuilleumier, A. Carof, B. Rotenberg, Phys. Rev. Lett. 116, 147804 (2016)

    ADS  Google Scholar 

  19. J.O. Daldrop, B.G. Kowalik, R.R. Netz, Phys. Rev. X 7, 041065 (2017)

    Google Scholar 

  20. J. Berner, B. Müller, J.R. Gomez-Solano, M. Krüger, C. Bechinger, Nat. Commun. 9, 999 (2018)

    ADS  Google Scholar 

  21. D. Selmeczi, S. Mosler, P.H. Hagedorn, N.B. Larsen, H. Flyvbjerg, Biophys. J. 89, 912 (2005)

    Google Scholar 

  22. G. Wilemski, M. Fixman, J. Chem. Phys. 60, 878 (1974)

    ADS  Google Scholar 

  23. A. Szabo, K. Schulten, Z. Schulten, J. Chem. Phys. 72, 4350 (1980)

    ADS  Google Scholar 

  24. A. Dua, R. Adhikari, J. Stat. Mech.: Theor. Exp. 2011, P04017 (2011)

    Google Scholar 

  25. J. Gowdy, M. Batchelor, I. Neelov, E. Paci, J. Phys. Chem. B 121, 9518 (2017)

    Google Scholar 

  26. T. Guerin, O. Benichou, R. Voituriez, Nat. Chem. 4, 568 (2012)

    Google Scholar 

  27. S.S. Plotkin, P.G. Wolynes, Phys. Rev. Lett. 80, 5015 (1998)

    ADS  Google Scholar 

  28. A. Das, D.E. Makarov, J. Phys. Chem. B 122, 9049 (2018)

    Google Scholar 

  29. R.F. Grote, J.T. Hynes, J. Chem. Phys. 73, 2715 (1980)

    ADS  MathSciNet  Google Scholar 

  30. B. Carmeli, A. Nitzan, Phys. Rev. Lett. 49, 423 (1982)

    ADS  MathSciNet  Google Scholar 

  31. J.E. Straub, M. Borkovec, B.J. Berne, J. Chem. Phys. 84, 1788 (1986)

    ADS  Google Scholar 

  32. P. Talkner, H.-B. Braun, J. Chem. Phys. 88, 7537 (1988)

    ADS  Google Scholar 

  33. E. Pollak, H. Grabert, P. Hänggi, J. Chem. Phys. 91, 4073 (1989)

    ADS  Google Scholar 

  34. R. Ianconescu, E. Pollak, J. Chem. Phys. 143, 104104 (2015)

    ADS  Google Scholar 

  35. S.C. Tucker, M.E. Tuckerman, B.J. Berne, E. Pollak, J. Chem. Phys. 95, 5809 (1991)

    ADS  Google Scholar 

  36. J. Kappler, J.O. Daldrop, F.N. Brünig, M.D. Boehle, R.R. Netz, J. Chem. Phys. 148, 014903 (2018)

    ADS  Google Scholar 

  37. I.S. Tolokh, G.W.N. White, S. Goldman, C.G. Gray, Mol. Phys. 100, 2351 (2002)

    ADS  Google Scholar 

  38. F. Gottwald, S. Karsten, S.D. Ivanov, O. Kühn, J. Chem. Phys. 142, 244110 (2015)

    ADS  Google Scholar 

  39. S.H. Northrup, J.T. Hynes, J. Chem. Phys. 73, 2700 (1980)

    ADS  MathSciNet  Google Scholar 

  40. R. Zwanzig, J. Stat. Phys. 9, 215 (1973)

    ADS  Google Scholar 

  41. R. Baron, D. Trzesniak, A.H. de Vries, A. Elsener, S.J. Marrink, W.F. van Gunsteren, ChemPhysChem 8, 452 (2007)

    Google Scholar 

  42. D.A. Potoyan, A. Savelyev, G.A. Papoian, WIREs Comput. Mol. Sci. 3, 69 (2013)

    Google Scholar 

  43. D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, Nature 397, 601 (1999)

    ADS  Google Scholar 

  44. J.O. Daldrop, M. Saita, M. Heyden, V.A. Lorenz-Fonfria, J. Heberle, R.R. Netz, Nat. Commun. 9, 311 (2018)

    ADS  Google Scholar 

  45. H.S. Chung, W.A. Eaton, Nature 502, 685 (2013)

    ADS  Google Scholar 

  46. M. Laleman, E. Carlon, H. Orland, J. Chem. Phys. 147, 214103 (2017)

    ADS  Google Scholar 

  47. V.I. Melʼnikov, S.V. Meshkov, J. Chem. Phys. 85, 1018 (1986)

    ADS  Google Scholar 

  48. P. Hänggi, U. Weiss, Phys. Rev. A 29, 2265 (1984)

    ADS  Google Scholar 

  49. B. Carmeli, A. Nitzan, Phys. Rev. A 29, 1481 (1984)

    ADS  Google Scholar 

  50. J.E. Straub, M. Borkovec, B.J. Berne, J. Chem. Phys. 83, 3172 (1985)

    ADS  Google Scholar 

  51. H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168, 115 (1988)

    ADS  MathSciNet  Google Scholar 

  52. J. Kappler, F. Noé, R.R. Netz, Phys. Rev. Lett. 122, 067801 (2019)

    ADS  Google Scholar 

  53. D. Marx, ChemPhysChem 7, 1848 (2006)

    Google Scholar 

  54. P. Reimann, G.J. Schmid, P. Hänggi, Phys. Rev. E 60, R1 (1999)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland R. Netz.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kappler, J., Hinrichsen, V.B. & Netz, R.R. Non-Markovian barrier crossing with two-time-scale memory is dominated by the faster memory component. Eur. Phys. J. E 42, 119 (2019). https://doi.org/10.1140/epje/i2019-11886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11886-7

Keywords

Navigation