Skip to main content
Log in

Deformation hysteresis of a water nano-droplet in an electric field

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Electric field is an effective method to manipulate droplets in micro/nano-scale, and various physical phenomena have been found due to the interaction of electric field and fluid flow. In this study, we developed a molecular dynamic model to investigate the deforming behavior of a nano-droplet in a uniform electric field. The nano-droplet was initially confined between two plates and then wetted on the lower plate (i.e., substrate) until an equilibrium state, after that a uniform electric field in vertical direction was imposed to the system. Due to the electrical force, the droplet started to deform until achieving a new equilibrium state and the dynamic process is recorded. By comparing the equilibrium state under different electric field strength, we found a deformation hysteresis phenomenon, i.e., different deformations were obtained when increasing and decreasing the electric field. To be specific, a large electric field (E = 0.57 V ·nm^-1) is needed to stretch the nano-droplet to touch the upper plate, while a relatively lower field (E = 0.40 V ·nm^-1) is adequate to keep it contacting with the plate. Accompanied by the deformation hysteresis, a distribution hysteresis of the average dipole orientations of water molecules in the nano-droplet is also found. Such a hysteresis phenomenon is caused by the electrohydrodynamic interactions between droplet and plates, and the findings of this study could enhance our understanding of droplet deformation in an electric field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.K. Ku, S.S. Kim, J. Electrostat. 57, 109 (2003)

    Article  Google Scholar 

  2. M. Barlettaa, A. Gisario, Prog. Org. Coat. 64, 339 (2009)

    Article  Google Scholar 

  3. B. Gao, Q. Yang, X. Zhao, G. Jin, Y. Ma, F. Xu, Trends Biotechnol. 34, 746 (2016)

    Article  Google Scholar 

  4. H. You, A.J. Steckl, Appl. Phys. Lett. 97, 023514 (2010)

    Article  ADS  Google Scholar 

  5. X. Chen, X. Li, J. Shao, N. An, H. Tian, C. Wang, T. Han, L. Wang, B. Lu, Small 13, 1604245 (2017)

    Article  Google Scholar 

  6. E. Schaffer, T.T. Albrecht, T.P. Russell, U. Steiner, Lett. Nat. 403, 874 (2000)

    Article  Google Scholar 

  7. X.G. Liang, W. Zhang, M.T. Li, Q.F. Xia, W. Wu, H.X. Ge, X.Y. Huang, S.Y. Chou, Nano Lett. 5, 527 (2005)

    Article  ADS  Google Scholar 

  8. H. Tian, J. Shao, X. Chen, L. Wang, Y. Ding, J. Micromech. Microeng. 27, 025008 (2017)

    Article  ADS  Google Scholar 

  9. R. Ruiter, J. Ruiter, H.B. Eral, C. Semprebon, M. Brinkmann, F. Mugele, Langmuir 28, 13300 (2012)

    Article  Google Scholar 

  10. C.D. Daub, D. Bratko, K. Leung, A. Luzar, J. Phys. Chem. C 111, 505 (2007)

    Article  Google Scholar 

  11. S.R. Mahmoudi, K. Adamiak, G.S. Peter Castle, Proc. R. Soc. A 467, 3257 (2011)

    Article  ADS  Google Scholar 

  12. C. Decamps, J.D. Coninck, Langmuir 16, 10150 (2000)

    Article  Google Scholar 

  13. F. Mugele, J.C. Baret, J. Phys.: Condens. Matter 17, R705 (2005)

    Google Scholar 

  14. F. Mugele, Soft Matter 5, 3377 (2009)

    Article  ADS  Google Scholar 

  15. R. Zhao, Q.C. Liu, P. Wang, Z.C. Liang, Chin. Phys. B 24, 086801 (2015)

    Article  ADS  Google Scholar 

  16. W.C. Nelson, P. Sen, C.J. Kim, Langmuir 27, 10319 (2011)

    Article  Google Scholar 

  17. E. Bormashenko, R. Pogreb, Y. Bormashenko, H. Aharoni, E. Shulzinger, R. Grinev, D. Rozenman, Z. Rozenman, RSC Adv. 5, 32491 (2011)

    Article  Google Scholar 

  18. Z. Brabcova, G. McHale, G.G. Wells, C.V. Brown, M.I. Newton, Appl. Phys. Lett. 110, 121603 (2017)

    Article  ADS  Google Scholar 

  19. C.D. Daub, D. Bratko, A. Luzar, Top Curr. Chem. 307, 155 (2012)

    Article  Google Scholar 

  20. F. Song, B. Li, C. Liu, Langmuir 29, 4266 (2013)

    Article  Google Scholar 

  21. T. Yen, Mol. Simul. 38, 509 (2012)

    Article  Google Scholar 

  22. F.H. Song, B.Q. Li, Y. Li, Phys. Chem. Chem. Phys. 17, 5543 (2015)

    Article  Google Scholar 

  23. Q. Li, Y. Xiao, X. Shi, S. Song, Nanomaterials 7, 265 (2017)

    Article  Google Scholar 

  24. D. Niu, G. Tang, Int. J. Heat Mass Transfer. 79, 647 (2014)

    Article  Google Scholar 

  25. H. Ren, L. Zhang, X. Li, Y. Li, W. Wu, H. Li, Phys. Chem. Chem. Phys. 17, 23460 (2015)

    Article  Google Scholar 

  26. J. Wang, S. Chen, D. Chen, Phys. Chem. Chem. Phys. 17, 30533 (2015)

    Article  Google Scholar 

  27. F. Song, L. Ma, J. Fan, Q. Chen, L. Zhang, B. Li, Nanomaterials 8, 340 (2018)

    Article  Google Scholar 

  28. F. Song, L. Ma, J. Fan, Q. Chen, G. Lei, B. Li, Phys. Chem. Chem. Phys. 20, 11987 (2018)

    Article  Google Scholar 

  29. D. Zong, Z. Yang, Y. Duan, Appl. Therm. Eng. 122, 71 (2017)

    Article  ADS  Google Scholar 

  30. M. Kargara, A. Lohrasebi, Phys. Chem. Chem. Phys. 19, 26833 (2017)

    Article  Google Scholar 

  31. M.P. Allen, D.J. Tildesley, J.R. Banavar, Computer Simulation of Liquids (Oxford University Press, New York, USA, 1989)

    Article  Google Scholar 

  32. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  33. P.H. Hünenberger, Adv. Polym. Sci. 173, 105 (2005)

    Article  Google Scholar 

  34. J.S. Eow, M. Ghadiri, A. Sharif, Colloids Surf. A: Physicochem. Eng. Asp. 225, 193 (2003)

    Article  Google Scholar 

  35. J.S. Eow, M. Ghadiri, A. Sharif, J. Electrostat. 51, 463 (2001)

    Article  Google Scholar 

  36. W. Hong, X. Ye, R. Xue, J. Disper. Sci. Technol. 39, 26 (2017)

    Article  Google Scholar 

  37. Q. Yang, B. Li, H. Tian, X. Li, J. Shao, X. Chen, F. Xu, ACS Appl. Mater. Interfaces 8, 17668 (2016)

    Article  Google Scholar 

  38. J.D. Sherwood, J. Fluid Mech. 188, 133 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhen Yang.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, F., Ju, D., Fan, J. et al. Deformation hysteresis of a water nano-droplet in an electric field. Eur. Phys. J. E 42, 120 (2019). https://doi.org/10.1140/epje/i2019-11885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11885-8

Keywords

Navigation