Skip to main content
Log in

Oblate to prolate transition of a vesicle in shear flow

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Vesicles are micrometric soft particles whose membrane is a two-dimensional incompressible fluid governed by bending resistance leading to a zoology of shapes. The dynamics of deflated vesicles in shear flow with a bottom wall, a first minimal configuration to consider confined vesicles, is investigated using numerical simulations. Coexistence under flow of oblate (metastable) and prolate (stable) shapes is studied in details. In particular, we discuss the boundaries of the region of coexistence in the (v, Ca -plane where v is the reduced volume of the vesicle and Ca the Capillary number. We characterize the transition from oblate to prolate and analyse the divergence of the transition time near the critical capillary number. We then analyse the lift dynamics of an oblate vesicle in the weak flow regime.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Barthes-Biesel, Annu. Rev. Fluid Mech. 48, 25 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Dimova, U. Seifert, B. Pouligny, S. Förster, H.G. Döbereiner, Eur. Phys. J. E 7, 241 (2002)

    Google Scholar 

  3. D.E. Disher, F. Ahmed, Annu. Rev. Biomed. Eng. 8, 323 (2006)

    Article  Google Scholar 

  4. F. Meng, Z. Zhong, J. Feijen, Biomacromolecules 10, 323 (2006)

    Google Scholar 

  5. V. Kantsler, V. Steinberg, Phys. Rev. Lett. 95, 258101 (2005)

    Article  ADS  Google Scholar 

  6. C. De Loubens, J. Deschamps, F. Edwards-Lévy, M. Leonetti, J. Fluid Mech. 789, 750 (2016)

    Article  ADS  Google Scholar 

  7. J. Deschamps, V. Kantsler, V. Steinberg, Phys. Rev. Lett. 102, 118105 (2009)

    Article  ADS  Google Scholar 

  8. H.L. Goldsmith, S.G. Mason, J. Colloid Interface Sci. 17, 448 (1962)

    Article  Google Scholar 

  9. J.R. Smart, D.T. Leighton Jr., Phys. Fluids A 3, 21 (1991)

    Article  ADS  Google Scholar 

  10. P. Olla, J. Phys. II 7, 1533 (1997)

    Google Scholar 

  11. P.M. Vlahovska, R.S. Garcia, Phys. Rev. E 75, 016313 (2007)

    Article  ADS  Google Scholar 

  12. A. farutin, C. Misbah, Phys. Rev. Lett. 110, 108104 (2013)

    Article  ADS  Google Scholar 

  13. H. Zhao, A.P. Spann, E.S.G. Shaqfeh, Phys. Fluids 23, 121901 (2011)

    Article  ADS  Google Scholar 

  14. N. Callens, C. Minetti, G. Coupier, M.-A. Mader, F. Dubois, C. Misbah, T. Podgorski, EPL 83, 24002 (2008)

    Article  ADS  Google Scholar 

  15. I. Cantat, C. Misbah, Phys. Rev. Lett. 83, 880 (1999)

    Article  ADS  Google Scholar 

  16. U. Seifert, Phys. Rev. Lett. 83, 876 (1999)

    Article  ADS  Google Scholar 

  17. S. Sukumaran, U. Seifert, Phys. Rev. E 64, 011916 (2001)

    Article  ADS  Google Scholar 

  18. B. Lorz, R. Simson, J. Nardi, E. Sackmann, Europhys. Lett. 51, 468 (2000)

    Article  ADS  Google Scholar 

  19. M. Abkarian, C. Lartigue, A. Viallat, Phys. Rev. Lett. 88, 068103 (2002)

    Article  ADS  Google Scholar 

  20. M. Abkarian, A. Viallat, Biophys. J. 89, 1055 (2005)

    Article  ADS  Google Scholar 

  21. S. Meßlinger, B. Schmidt, H. Noguchi, G. Gompper, Phys. Rev. E 80, 011901 (2009)

    Article  ADS  Google Scholar 

  22. M. Kraus, U. Seifert, R. Lipowsky, Europhys. Lett. 32, 431 (1995)

    Article  ADS  Google Scholar 

  23. U. Seifert, K. Berndl, R. Lipowsky, Phys. Rev. A 44, 1182 (1991)

    Article  ADS  Google Scholar 

  24. U. Seifert, Adv. Phys. 46, 13 (1997)

    Article  ADS  Google Scholar 

  25. A.P. Spann, H. Zhao, E.S.G. Shaqfeh, Phys. Fluids 26, 031902 (2014)

    Article  ADS  Google Scholar 

  26. H. Noguchi, G. Gompper, Phys. Rev. Lett. 93, 258102 (2004)

    Article  ADS  Google Scholar 

  27. H. Noguchi, G. Gompper, Phys. Rev. E 72, 011901 (2005)

    Article  ADS  Google Scholar 

  28. G. Boedec, M. Leonetti, M. Jaeger, J. Comput. Phys. 230, 1020 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Zhao, E.S.G. Shaqfeh, J. Fluid Mech. 674, 578 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  30. T. Biben, A. Farutin, C. Misbah, Phys. Rev. E 83, 031921 (2011)

    Article  ADS  Google Scholar 

  31. J. Blake, Math. Proc. Cambridge Philos. Soc. 70, 303 (1971)

    Article  ADS  Google Scholar 

  32. C. De Loubens, J. Deschamps, G. Boedec, M. Leonetti, J. Fluid Mech. 767, R3 (2015)

    Article  ADS  Google Scholar 

  33. J. Gounley, G. Boedec, M. Jaeger, M. Leonetti, J. Fluid Mech. 791, 464 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. G. Boedec, M. Leonetti, M. Jaeger, J. Comput. Phys. 342, 117 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Jarić, U. Seifert, W. Wintz, M. Wortis, Phys. Rev. E 52, 6623 (1995)

    Article  ADS  Google Scholar 

  36. A. Farutin, C. Misbah, Phys. Rev. Lett. 109, 248106 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Leonetti.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degonville, M., Boedec, G. & Leonetti, M. Oblate to prolate transition of a vesicle in shear flow. Eur. Phys. J. E 42, 116 (2019). https://doi.org/10.1140/epje/i2019-11881-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11881-0

Keywords

Navigation