Skip to main content
Log in

Nonequilibrium Casimir pressures in liquids under shear

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In stationary nonequilibrium states coupling between hydrodynamic modes causes thermal fluctuations to become long ranged inducing nonequilibrium Casimir pressures. Here we consider nonequilibrium Casimir pressures induced in liquids by a velocity gradient. Specifically, we have obtained explicit expressions for the magnitude of the shear-induced pressure enhancements in a liquid layer between two horizontal plates that complete and correct results previously presented in the literature. In contrast to nonequilibrium Casimir pressures induced by a temperature or concentration gradient, we find that in shear nonequilibrium contributions from short-range fluctuations are no longer negligible. In addition, it is noted that currently available computer simulations of model fluids in shear observe effects from molecular correlations at nanoscales that have a different physical origin and do not probe shear-induced pressures resulting from coupling of long-wavelength hydrodynamic modes. Even more importantly, we find that in actual experimental conditions, shear-induced pressure enhancements are caused by viscous heating and not by thermal velocity fluctuations. Hence, isothermal computer simulations are irrelevant for the interpretation of experimental shear-induced pressure enhancements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kardar, R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999)

    Article  ADS  Google Scholar 

  2. G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Rev. Mod. Phys. 81, 1827 (2009)

    Article  ADS  Google Scholar 

  3. M. Krech, The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994)

  4. T.R. Kirkpatrick, J.K. Bhattacharje, J.V. Sengers, Phys. Rev. Lett. 119, 030603 (2017)

    Article  ADS  Google Scholar 

  5. J.R. Dorfman, T.R. Kirkpatrick, J.V. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994)

    Article  ADS  Google Scholar 

  6. J.M. Ortiz de Zárate, J.V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006)

  7. J.F. Lutsko, J.W. Dufty, Phys. Rev. A 32, 3040 (1985)

    Article  ADS  Google Scholar 

  8. J.F. Lutsko, J.W. Dufty, Phys. Rev. E 66, 041206 (2002)

    Article  ADS  Google Scholar 

  9. J.V. Sengers, J.M. Ortiz de Zárate, J. Non-Newton. Fluid Mech. 165, 925 (2010)

    Article  Google Scholar 

  10. K. Kawasaki, J.D. Gunton, Phys. Rev. A 8, 2048 (1973)

    Article  ADS  Google Scholar 

  11. T. Yamada, K. Kawasaki, Prog. Theor. Phys. (Japan) 53, 111 (1975)

    Article  ADS  Google Scholar 

  12. M.H. Ernst, B. Cichocki, J.R. Dorfman, J. Sharma, H. van Beijeren, J. Stat. Phys. 18, 237 (1978)

    Article  ADS  Google Scholar 

  13. H. Wada, S.I. Sasa, Phys. Rev. E 67, 065302(R) (2003)

    Article  ADS  Google Scholar 

  14. J.M. Ortiz de Zárate, J.V. Sengers, Phys. Rev. E 77, 026306 (2008)

    Article  ADS  Google Scholar 

  15. J.M. Ortiz de Zárate, J.V. Sengers, Phys. Rev. E 79, 046308 (2009)

    Article  ADS  Google Scholar 

  16. J.M. Ortiz de Zárate, J.V. Sengers, J. Stat. Phys. 144, 774 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. J.M. Ortiz de Zárate, J.V. Sengers, J. Stat. Phys. 150, 540 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. D.J. Evans, Phys. Rev. A 23, 1988 (1981)

    Article  ADS  Google Scholar 

  19. S.H. Lee, P.T. Cummings, J. Chem. Phys. 99, 3919 (1993)

    Article  ADS  Google Scholar 

  20. S.H. Lee, P.T. Cummings, J. Chem. Phys. 101, 6206 (1994)

    Article  ADS  Google Scholar 

  21. G. Marcelli, B.D. Todd, R.J. Sadus, Phys. Rev. E 63, 021204 (2001)

    Article  ADS  Google Scholar 

  22. J. Ge, G. Marcelli, B.D. Todd, R.J. Sadus, Phys. Rev. E 64, 021201 (2001)

    Article  ADS  Google Scholar 

  23. J. Ge, B.D. Todd, G. Wu, R.J. Sadus, Phys. Rev. E 67, 061201 (2003)

    Article  ADS  Google Scholar 

  24. A. Ahmed, P. Mausbach, R.J. Sadus, Phys. Rev. E 82, 011201 (2010)

    Article  ADS  Google Scholar 

  25. A. Varghese, G. Gompper, R.G. Winkler, Phys. Rev. E 96, 062617 (2017)

    Article  ADS  Google Scholar 

  26. T.R. Kirkpatrick, J.M. Ortiz de Zárate, J.V. Sengers, Phys. Rev. Lett. 110, 235902 (2013)

    Article  ADS  Google Scholar 

  27. P.G. Drazin, W.H. Reid, Hydrodynamic Stability, 2nd edition (Cambridge University Press, Cambridge, UK, 2004)

  28. B. Eckhardt, R. Pandit, Eur. Phys. J. B 33, 373 (2003)

    Article  ADS  Google Scholar 

  29. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edition (Pergamon, London, 1987)

  30. P.J. Schmid, D.S. Henningson, Stability and Transition in Shear Flows (Springer, Berlin, 2001)

  31. N. Tillmark, P. Alfredson, J. Fluid Mech. 235, 89 (1992)

    Article  ADS  Google Scholar 

  32. J.R. Dorfman, T.R. Kirkpatrick, H. van Beijeren, Contemporary Kinetic Theory of Matter (Cambridge University Press, Cambridge) in print

  33. F. Daviaud, J. Hegseth, P. Berge, Phys. Rev. Lett. 69, 2511 (1992)

    Article  ADS  Google Scholar 

  34. O. Dauchot, E. Daviaud, Phys. Fluids 7, 335 (1995)

    Article  ADS  Google Scholar 

  35. S. Bottin, F. Daviaud, P. Manneville, O. Dauchot, Europhys. Lett. 43, 171 (1998)

    Article  ADS  Google Scholar 

  36. A. Prigent, G. Gregoire, H. Chate, O. Dauchot, Physica D 174, 100 (2003)

    Article  ADS  Google Scholar 

  37. M. Couliou, R. Monchaux, Phys. Fluids 27, 034101 (2015)

    Article  ADS  Google Scholar 

  38. L. Klotz, G. Lemoult, I. Frontczak, L.S. Tuckerman, J.E. Wesfreid, Phys. Rev. Fluids 2, 043904 (2017)

    Article  ADS  Google Scholar 

  39. L. Klotz, J. Wesfreid, J. Fluid Mech. 829, R4 (2017)

    Article  ADS  Google Scholar 

  40. R. Monchaux, private communication

  41. Revised Supplementary Release on Properties of Liquid Water at 0.1 MPa, IAPWS SR6-08 (2011), available at www.iapws.org

  42. T.R. Kirkpatrick, J.M. Ortiz de Zárate, J.V. Sengers, Phys. Rev. E 93, 012148 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  43. J.J. Brey, J. Chem. Phys. 79, 4585 (1983)

    Article  ADS  Google Scholar 

  44. H. van Beijeren, J.R. Dorfman, Physica 68, 437 (1973)

    Article  ADS  Google Scholar 

  45. J.W. Dufty, Mol. Phys. 100, 2331 (2002)

    Article  ADS  Google Scholar 

  46. J.J. Erpenbeck, W. Wood, J. Stat. Phys. 24, 455 (1981)

    Article  ADS  Google Scholar 

  47. H. van Beijeren, Phys. Lett. A 105, 191 (1984)

    Article  ADS  Google Scholar 

  48. T.R. Kirkpatrick, Phys. Rev. Lett. 53, 1735 (1984)

    Article  ADS  Google Scholar 

  49. T.R. Kirkpatrick, Phys. Rev. A 32, 3130 (1985)

    Article  ADS  Google Scholar 

  50. T.R. Kirkpatrick, J.C. Nieuwoudt, Phys. Rev. A 33, 2651 (1986)

    Article  ADS  Google Scholar 

  51. A.L. Garcia, M. Malek Mansour, G.C. Lie, M. Mareschal, E. Clementi, Phys. Rev. A 36, 4348 (1987)

    Article  ADS  Google Scholar 

  52. F.J. Alexander, A.L. Garcia, B.J. Adler, Phys. Fluids 6, 3854 (1994)

    Article  ADS  Google Scholar 

  53. G. Gompper, T. Ihle, D.M. Kroll, R.C. Winkler, Adv. Polym. Sci. 221, 1 (2009)

    Google Scholar 

  54. C.-C. Huang, A. Varghese, G. Gompper, R.C. Winkler, Phys. Rev. E 91, 013310 (2015)

    Article  ADS  Google Scholar 

  55. A. Varghese, C.-C. Huang, R.G. Winkler, G. Gompper, Phys. Rev. E 92, 053002 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  56. J.W. Dufty, J. Lutsko, in Recent Developments in Nonequilibrium Thermodynamics: Fluids and Related Topics, edited by J. Casas-Vázquez, D. Jou, J.M. Rub\'i, Lect. Notes Phys., 253 (Springer, Berlin, 1986) pp. 47--84

  57. R.A. Burton, Heat, Bearings, and Lubrication (Springer, New York, 2000) Chapt. 2

  58. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd edition (Wiley, New York, 2002) Chapt. 10

  59. E.W. Lemon, E.W. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0 (National Institute of Standards and Technology, Gaithersburg, MD, 2018)

  60. Ch. Teagler, R. Span, W.A. Wagner, J. Phys. Chem. Ref. Data 28, 779 (1999)

    Article  ADS  Google Scholar 

  61. T.R. Kirkpatrick, J.M. Ortiz de Zárate, J.V. Sengers, Phys. Rev. Lett. 115, 035901 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Sengers.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz de Zárate, J.M., Kirkpatrick, T.R. & Sengers, J.V. Nonequilibrium Casimir pressures in liquids under shear. Eur. Phys. J. E 42, 106 (2019). https://doi.org/10.1140/epje/i2019-11868-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11868-9

Keywords

Navigation