Skip to main content
Log in

The cooperative free volume rate model for segmental dynamics: Application to glass-forming liquids and connections with the density scaling approach

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this paper, we apply the cooperative free volume (CFV) rate model for pressure-dependent dynamics of glass-forming liquids and polymer melts. We analyze segmental relaxation times, \( \tau\) , as a function of temperature (T and free volume ( \( V_{\rm free}\) , and make substantive comparisons with the density scaling approach. \( V_{\rm free}\) , the difference between the total volume (V and the volume at close-packing, is predicted independently of the dynamics for any temperature and pressure using the locally correlated lattice (LCL) equation-of-state (EOS) analysis of characteristic thermodynamic data. We discuss the underlying physical motivation in the CFV and density scaling models, and show that their key, respective, material parameters are connected, where the CFV b parameter and the density scaling \( \gamma\) parameter each characterize the relative sensitivity of dynamics to changes in T , vs. changes in V . We find \( \gamma\approx 1/[b(V_{{{\rm free}}}/V)_{@T_{\rm g}}]\) , where \( (V_{{{\rm free}}}/V)_{@T_{\rm g}}\) is the value predicted by the LCL EOS at the ambient \( T_{\rm g}\) . In comparing the predictive power of the two models we highlight the CFV advantage in yielding a universal linear collapse of relaxation data using a minimal set of parameters, compared to the same parameter space yielding a changing functional form in the density scaling approach. Further, we demonstrate that in the low data limit, where there is not enough data to characterize the density scaling model, the CFV model may still be successfully applied, and we even use it to predict the correct \( \gamma\) parameter.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. White, J.E.G. Lipson, Macromolecules 51, 7924 (2018)

    Article  ADS  Google Scholar 

  2. R.P. White, J.E.G. Lipson, J. Chem. Phys. 147, 184503 (2017)

    Article  ADS  Google Scholar 

  3. R.P. White, J.E.G. Lipson, Macromolecules 51, 4896 (2018)

    Article  ADS  Google Scholar 

  4. C. Roland, S. Hensel-Bielowka, M. Paluch, R. Casalini, Rep. Prog. Phys. 68, 1405 (2005)

    Article  ADS  Google Scholar 

  5. G. Floudas, M. Paluch, A. Grzybowski, K. Ngai, Molecular Dynamics of Glass-Forming Systems - Effects of Pressure (Springer, Berlin, 2011)

  6. A. Grzybowski, M. Paluch, in The Scaling of Relaxation Processes, edited by F. Kremer, A. Loidl (Springer International Publishing, Cham, 2018) pp. 77--119

  7. L. Bohling, T.S. Ingebrigtsen, A. Grzybowski, M. Paluch, J.C. Dyre, T.B. Schroder, New J. Phys. 14, 113035 (2012)

    Article  ADS  Google Scholar 

  8. J.C. Dyre, J. Phys. Chem. B 118, 10007 (2014)

    Article  Google Scholar 

  9. N. Gnan, T.B. Schroder, U.R. Pedersen, N.P. Bailey, J.C. Dyre, J. Chem. Phys. 131, 234504 (2009)

    Article  ADS  Google Scholar 

  10. D. Fragiadakis, C.M. Roland, J. Chem. Phys. 134, 044504 (2011)

    Article  ADS  Google Scholar 

  11. R. Casalini, U. Mohanty, C.M. Roland, J. Chem. Phys. 125, 014505 (2006)

    Article  ADS  Google Scholar 

  12. R. Casalini, C.M. Roland, J. Non-Cryst. Solids 353, 3936 (2007)

    Article  ADS  Google Scholar 

  13. A.K. Doolittle, J. Appl. Phys. 22, 1471 (1951)

    Article  ADS  Google Scholar 

  14. M.L. Williams, R.F. Landel, J.D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955)

    Article  Google Scholar 

  15. J.D. Ferry, Viscoelastic Properties of Polymers, second edition (Wiley, New York, 1970)

  16. M.H. Cohen, D. Turnbull, J. Chem. Phys. 31, 1164 (1959)

    Article  ADS  Google Scholar 

  17. R.P. White, J.E.G. Lipson, Macromolecules 49, 3987 (2016)

    Article  ADS  Google Scholar 

  18. R.P. White, J.E.G. Lipson, ACS Macro Lett. 6, 529 (2017)

    Article  Google Scholar 

  19. A. Debot, R.P. White, J.E.G. Lipson, S. Napolitano, ACS Macro Lett. 8, 41 (2019)

    Article  Google Scholar 

  20. W. Hoover, M. Ross, Contemp. Phys. 12, 339 (1971)

    Article  ADS  Google Scholar 

  21. Y. Hiwatari, H. Matsuda, T. Ogawa, N. Ogita, A. Ueda, Prog. Theor. Phys. 52, 1105 (1974)

    Article  ADS  Google Scholar 

  22. U.R. Pedersen, N.P. Bailey, T.B. Schroder, J.C. Dyre, Phys. Rev. Lett. 100, 015701 (2008)

    Article  ADS  Google Scholar 

  23. U.R. Pedersen, T.B. Schroder, J.C. Dyre, Phys. Rev. Lett. 105, 157801 (2010)

    Article  ADS  Google Scholar 

  24. D. Coslovich, C.M. Roland, J. Chem. Phys. 131, 151103 (2009)

    Article  ADS  Google Scholar 

  25. D. Coslovich, C.M. Roland, J. Phys. Chem. B 112, 1329 (2008)

    Article  Google Scholar 

  26. D. Coslovich, C.M. Roland, J. Chem. Phys. 130, 014508 (2009)

    Article  ADS  Google Scholar 

  27. I. Avramov, J. Non-Cryst. Solids 262, 258 (2000)

    Article  ADS  Google Scholar 

  28. J.E.G. Lipson, R.P. White, J. Chem. Eng. Data 59, 3289 (2014)

    Article  Google Scholar 

  29. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)

    Article  ADS  Google Scholar 

  30. R. Casalini, C.M. Roland, Phys. Rev. Lett. 113, 085701 (2014)

    Article  ADS  Google Scholar 

  31. K. Koperwas, A. Grzybowski, S.N. Tripathy, E. Masiewicz, M. Paluch, Sci. Rep. 5, 17782 (2015)

    Article  ADS  Google Scholar 

  32. M. Goldstein, J. Phys. Chem. 77, 667 (1973)

    Article  Google Scholar 

  33. C. Roland, R. Casalini, Macromolecules 36, 1361 (2003)

    Article  ADS  Google Scholar 

  34. M. Paluch, S. Haracz, A. Grzybowski, M. Mierzwa, J. Pionteck, A. Rivera-Calzada, C. Leon, J. Phys. Chem. Lett. 1, 987 (2010)

    Article  Google Scholar 

  35. M. Naoki, H. Endou, K. Matsumoto, J. Phys. Chem. 91, 4169 (1987)

    Article  Google Scholar 

  36. P. Zoller, D. Walsh, Standard Pressure-Volume-Temperature Data for Polymers (Technomic Pub Co., Lancaster, PA, 1995)

  37. W. Heinrich, B. Stoll, Colloid Polym. Sci. 263, 873 (1985)

    Article  Google Scholar 

  38. R. Casalini, C. Roland, J. Chem. Phys. 119, 4052 (2003)

    Article  ADS  Google Scholar 

  39. T. Ougizawa, G.T. Dee, D.J. Walsh, Macromolecules 24, 3834 (1991)

    Article  ADS  Google Scholar 

  40. M. Paluch, C. Roland, S. Pawlus, J. Chem. Phys. 116, 10932 (2002)

    Article  ADS  Google Scholar 

  41. M. Paluch, R. Casalini, A. Patkowski, T. Pakula, C. Roland, Phys. Rev. E 68, 031802 (2003)

    Article  ADS  Google Scholar 

  42. M. Paluch, S. Pawlus, C. Roland, Macromolecules 35, 7338 (2002)

    Article  ADS  Google Scholar 

  43. P. Panagos, G. Floudas, J. Non-Cryst. Solids 407, 184 (2015)

    Article  ADS  Google Scholar 

  44. A. Panagopoulou, S. Napolitano, Phys. Rev. Lett. 119, 097801 (2017)

    Article  ADS  Google Scholar 

  45. S. Hensel-Bielowka, J. Ziolo, M. Paluch, C. Roland, J. Chem. Phys. 117, 2317 (2002)

    Article  ADS  Google Scholar 

  46. M. Paluch, C. Roland, R. Casalini, G. Meier, A. Patkowski, J. Chem. Phys. 118, 4578 (2003)

    Article  ADS  Google Scholar 

  47. R. Casalini, M. Paluch, C. Roland, Phys. Rev. E 67, 031505 (2003)

    Article  ADS  Google Scholar 

  48. R. Casalini, M. Paluch, C.M. Roland, J. Phys.: Condens. Matter 15, S859 (2003)

    ADS  Google Scholar 

  49. M. Paluch, R. Casalini, A. Best, A. Patkowski, J. Chem. Phys. 117, 7624 (2002)

    Article  ADS  Google Scholar 

  50. M. Naoki, S. Koeda, J. Phys. Chem. 93, 948 (1989)

    Article  Google Scholar 

  51. A. Rivera-Calzada, K. Kaminski, C. Leon, M. Much, J. Phys. Chem. B 112, 3110 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. G. Lipson.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, R.P., Lipson, J.E.G. The cooperative free volume rate model for segmental dynamics: Application to glass-forming liquids and connections with the density scaling approach. Eur. Phys. J. E 42, 100 (2019). https://doi.org/10.1140/epje/i2019-11862-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11862-3

Keywords

Navigation