Skip to main content

Advertisement

Log in

Isochronal superpositioning in the equilibrium regime of superpressed propylene carbonate to ∼ 1.8 GPa: A study by diffusivity measurement of the fluorescent probe Coumarin 1

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We address the problem of glass-forming of liquids by superpressing. We study the pressure-induced dynamic change of the fragile van der Waals liquid propylene carbonate towards the glassy state in the equilibrium regime by measuring the diffusivity of the fluorescent probe Coumarin 1 embedded in the host liquid. The probe diffusivity is measured by the fluorescence recovery after photobleaching (FRAP) technique across a bleached volume generated by the near-field diffracted pattern of a laser beam. The recovered fluorescence intensity fits to a stretched exponential with the diffusive time \(\tau\) and the stretched exponent \(\beta\) as free parameters. In the pressure range [0.3-1.0]GPa the diffusivity decouples from the Stokes-Einstein relation. The decoupling correlates well to a decrease of \(\beta\). The variation of \(\beta\) is non-monotonous with \( \tau\) showing a minimum at \(\tau\sim 10^{3}\) s. We evidence an isochronal superpositioning over about 3 decades of \( \tau\) between ∼ 10 s and \( \sim 3\times 10^{3}\) s and a density scaling in the whole investigated pressure range. The pressure at which \( \beta\) is minimum coincides to the dynamical crossover pressure measured by other authors. This crossover pressure is compatible with the critical point of MCT theory. As our studied pressure range encompasses the critical pressure, the non-monotonous variation of \( \beta\) opens new insight in the approach to the critical point.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Roland, S. Hensel-Bielowka, M. Paluch, R. Casalini, Rep. Prog. Phys. 68, 1405 (2005)

    Article  ADS  Google Scholar 

  2. M. Paluch, K. Grzybowska, A. Grzybowski, J. Phys.: Condens. Matter 19, 205117 (2007)

    ADS  Google Scholar 

  3. K. Kaminski, S. Pawlus, K. Adrjanowicz, Z. Wojnarowska, P. Wlodarczyk, M. Paluch, J. Phys.: Condens. Matter 24, 065105 (2012)

    ADS  Google Scholar 

  4. L. Hong, P.D. Gujrati, V.N. Novikov, A.P. Sokolov, J. Chem. Phys. 131, 194511 (2009)

    Article  ADS  Google Scholar 

  5. L. Hong, V.N. Novikov, A.P. Sokolov, Phys. Rev. E 83, 061508 (2011)

    Article  ADS  Google Scholar 

  6. A. Tölle, Rep. Prog. Phys. 64, 1473 (2001)

    Article  ADS  Google Scholar 

  7. K.L. Ngai, R. Casalini, S. Capaccioli, M. Paluch, C.M. Roland, J. Phys. Chem. B 109, 17356 (2005)

    Article  Google Scholar 

  8. R. Casalini, D. Fragiadakis, C.M. Roland, J. Chem. Phys. 142, 064504 (2015)

    Article  ADS  Google Scholar 

  9. H.W. Hansen, B. Frick, S. Capaccioli, A. Sanz, K. Niss, J. Chem. Phys. 149, 214503 (2018)

    Article  Google Scholar 

  10. M. Bonetti, J. Phys. Chem. B 120, 4319 (2016)

    Article  Google Scholar 

  11. I. Chang, H. Sillescu, J. Phys. Chem. B 101, 8794 (1997)

    Article  Google Scholar 

  12. F.R. Blackburn, C.-Y. Wang, M.D. Ediger, J. Phys. Chem. 100, 18249 (1996)

    Article  Google Scholar 

  13. D. Axelrod, D.E. Koppel, J. Schlessinger, E. Elson, W.W. Webb, Biophys. J. 16, 1055 (1976)

    Article  ADS  Google Scholar 

  14. J.C.G. Blonk, A. Don, H. Van Aalst, J.J. Birmingham, J. Microsc. 169, 363 (1993)

    Article  Google Scholar 

  15. K. Braeckmans, K. Remaut, R.E. Vandenbroucke, B. Lucas, S.C. De Smedt, J. Demeester, Biophys. J. 92, 2172 (2007)

    Article  ADS  Google Scholar 

  16. M.T. Cicerone, M.D. Ediger, J. Chem. Phys. 104, 7210 (1996)

    Article  ADS  Google Scholar 

  17. F. Bardak, J.R. Rajian, P. Son, E.L. Quitevis, J. Non-Cryst. Solids 407, 324 (2015)

    Article  ADS  Google Scholar 

  18. R. Casalini, S. Bair, J. Chem. Phys. 128, 084511 (2008)

    Article  ADS  Google Scholar 

  19. A. Reiser, G. Kasper, Europhys. Lett. 76, 1137 (2006)

    Article  ADS  Google Scholar 

  20. G.J. Piermarini, S. Block, J.D. Barnett, J. Appl. Phys. 44, 5377 (1973)

    Article  ADS  Google Scholar 

  21. S. Pawlus, R. Casalini, C.M. Roland, M. Paluch, S.J. Rzoska, J. Ziolo, Phys. Rev. E 70, 061501 (2004)

    Article  ADS  Google Scholar 

  22. M.V. Kondrin, E.L. Gromnitskaya, A.A. Pronin, A.G. Lyapin, V.V. Brazhkin, A.A. Volkov, J. Chem. Phys. 137, 084502 (2012)

    Article  ADS  Google Scholar 

  23. I.V. Danilov, E.L. Gromnitskaya, V.V. Brazhkin, J. Phys. Chem. B 120, 7593 (2016)

    Article  Google Scholar 

  24. A. Reiser, G. Kasper, S. Hunklinger, Phys. Rev. B 72, 094204 (2005)

    Article  ADS  Google Scholar 

  25. B.D. Wagner, Molecules 14, 210 (2009)

    Article  Google Scholar 

  26. T. Gustavsson, L. Cassara, S. Marguet, G. Gurzadyan, P. van der Meulen, S. Pommeret, J.-C. Mialocq, Photochem. Photobiol. Sci. 2, 329 (2003)

    Article  Google Scholar 

  27. T.K.L. Meyvis, S.C. De Smedt, P. Van Oostveldt, J. Demeester, Pharm. Res. 16, 1153 (1999)

    Article  Google Scholar 

  28. F.J. Torcal-Milla, L.M. Sanchez-Brea, Appl. Opt. 56, 3628 (2017)

    Article  ADS  Google Scholar 

  29. X. Luo, M. Hui, S. Wang, Y. Hou, S. Zhou, Q. Zhu, Rev. Sci. Instrum. 89, 033102 (2018)

    Article  ADS  Google Scholar 

  30. S. Seiffert, W. Oppermann, J. Microsc. 220, 20 (2005)

    Article  MathSciNet  Google Scholar 

  31. P.A. Perry, M.A. Fitzgerald, R.G. Gilbert, Biomacromolecules 7, 521 (2006)

    Article  Google Scholar 

  32. N. Tateiwa, Y. Haga, Rev. Sci. Instrum. 80, 123901 (2009)

    Article  ADS  Google Scholar 

  33. S. Klotz, K. Takemura, T. Strässle, T. Hansen, J. Phys.: Condens. Matter 24, 325103 (2012)

    Google Scholar 

  34. Y. Yoshimura, H. Abe, Y. Imai, T. Takekiyo, N. Hamaya, J. Phys. Chem. B 117, 3264 (2013)

    Article  Google Scholar 

  35. M.C.C. Ribeiro, A.A.H. Padua, M.F. Costa Gomes, J. Chem. Phys. 140, 244514 (2014)

    Article  ADS  Google Scholar 

  36. T.C. Ransom, W.F. Oliver, Phys. Rev. Lett. 119, 025702 (2017)

    Article  ADS  Google Scholar 

  37. T.C. Ransom, M. Ahart, R.J. Hemley, C.M. Roland, Macromolecules 50, 8274 (2017)

    Article  ADS  Google Scholar 

  38. A. Bondeau, J. Huck, J. Phys. (Paris) 46, 1717 (1985)

    Article  Google Scholar 

  39. K. Schröter, E. Donth, J. Non-Cryst. Solids 307-310, 270 (2002)

    Article  ADS  Google Scholar 

  40. M.V. Kondrin, A.A. Pronin, Y.B. Lebed, V.V. Brazhkin, J. Chem. Phys. 139, 084510 (2013)

    Article  ADS  Google Scholar 

  41. E. Endress, S. Weigelt, G. Reents, T.M. Bayerl, Eur. Phys. J. E 16, 81 (2005)

    Article  Google Scholar 

  42. F. Mueller, P. Wach, J.G. McNally, Biophysical J. 94, 3323 (2008)

    Article  ADS  Google Scholar 

  43. F. Waharte, C.M. Brown, S. Coscoy, E. Coudrier, F. Amblard, Biophysical J. 88, 1467 (2005)

    Article  ADS  Google Scholar 

  44. G.P. Johari, E. Whalley, Faraday Symp. Chem. Soc. 6, 23 (1972)

    Article  Google Scholar 

  45. C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000)

    Article  ADS  Google Scholar 

  46. L. Comez, D. Fioretto, H. Kriegs, W. Steffen, Phys. Rev. E 66, 032501 (2002)

    Article  ADS  Google Scholar 

  47. S.F. Swallen, P.A. Bonvallet, R.J. McMahon, M.D. Ediger, Phys. Rev. Lett. 90, 015901 (2003)

    Article  ADS  Google Scholar 

  48. K.R. Harris, J. Chem. Phys. 131, 054503 (2009)

    Article  ADS  Google Scholar 

  49. W.M. Du, G. Li, H.Z. Cummins, M. Fuchs, J. Toulouse, L.A. Knauss, Phys. Rev. E 49, 2192 (1994)

    Article  ADS  Google Scholar 

  50. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)

    Article  ADS  Google Scholar 

  51. M.K. Mapes, S.F. Swallen, M.D. Ediger, J. Phys. Chem. B 110, 507 (2006)

    Article  Google Scholar 

  52. F. Qi, K.U. Schug, S. Dupont, A. Döß, R. Böhmer, H. Sillescu, H. Kolshorn, H. Zimmermann, J. Chem. Phys. 112, 9455 (2000)

    Article  ADS  Google Scholar 

  53. C.P. Lindsey, G.D. Patterson, J. Chem. Phys. 73, 3348 (1980)

    Article  ADS  Google Scholar 

  54. R. Zorn, J. Chem. Phys. 116, 3204 (2002)

    Article  ADS  Google Scholar 

  55. K. Niss, T. Hecksher, J. Chem. Phys. 149, 230901 (2018)

    Article  ADS  Google Scholar 

  56. R. Casalini, C.M. Roland, J. Chem. Phys. 148, 134506 (2018)

    Article  ADS  Google Scholar 

  57. A. Rivera-Calzada, K. Kaminski, C. Leon, M. Paluch, J. Phys. Chem. B 112, 3110 (2008)

    Article  Google Scholar 

  58. V.N. Novikov, A.P. Sokolov, Phys. Rev. E 67, 031507 (2003)

    Article  ADS  Google Scholar 

  59. R. Casalini, M. Paluch, C.M. Roland, J. Chem. Phys. 118, 5701 (2003)

    Article  ADS  Google Scholar 

  60. R. Casalini, C.M. Roland, Phys. Rev. Lett. 92, 245702 (2004)

    Article  ADS  Google Scholar 

  61. W. Kob, in Experimental and Theoretical Approaches to Supercooled Liquids: Advances and Novel Applications, edited by J. Fourkas, D. Kivelson, U. Mohanty, K. Nelson (ACS Books, Washington, 1997)

  62. A. Cavagna, Phys. Rep. 476, 51 (2009)

    Article  ADS  Google Scholar 

  63. Z. Chen, C.A. Angell, R. Richert, Eur. Phys. J. E 35, 65 (2012)

    Article  Google Scholar 

  64. F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S.-H. Chen, H.E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 107, 22457 (2010)

    Article  ADS  Google Scholar 

  65. F. Mallamace, C. Corsaro, N. Leone, V. Villari, N. Micali, S.-H. Chen, Sci. Rep. 4, 1 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bonetti.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonetti, M., Dubois, A. Isochronal superpositioning in the equilibrium regime of superpressed propylene carbonate to ∼ 1.8 GPa: A study by diffusivity measurement of the fluorescent probe Coumarin 1. Eur. Phys. J. E 42, 97 (2019). https://doi.org/10.1140/epje/i2019-11861-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11861-4

Keywords

Navigation