Skip to main content

Advertisement

SpringerLink
  1. Home
  2. The European Physical Journal E
  3. Article
Stochastic dynamics of dissolving active particles
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Effective squirmer models for self-phoretic chemically active spherical colloids

12 December 2018

M. N. Popescu, W. E. Uspal, … S. Dietrich

Active colloids under geometrical constraints in viscoelastic media

11 March 2021

N Narinder, Wei-jing Zhu & Clemens Bechinger

Towards an analytical description of active microswimmers in clean and in surfactant-covered drops

11 September 2020

Alexander R. Sprenger, Vaseem A. Shaik, … Abdallah Daddi-Moussa-Ider

Coupled Self-Organized Hydrodynamics and Stokes Models for Suspensions of Active Particles

31 January 2019

Pierre Degond, Sara Merino-Aceituno, … Hui Yu

Self-diffusion of nanoscale particles with hard and soft sphere models

31 March 2020

Huawei Sun & Yaohong Wang

From hydrodynamic lubrication to many-body interactions in dense suspensions of active swimmers

14 June 2018

Natsuhiko Yoshinaga & Tanniemola B. Liverpool

Switching Interacting Particle Systems: Scaling Limits, Uphill Diffusion and Boundary Layer

27 January 2022

Simone Floreani, Cristian Giardinà, … Frank Redig

Active spheres induce Marangoni flows that drive collective dynamics

01 February 2021

Martin Wittmann, Mihail N. Popescu, … Juliane Simmchen

Non-equilibrium phase separation in mixtures of catalytically active particles: size dispersity and screening effects

03 September 2021

Vincent Ouazan-Reboul, Jaime Agudo-Canalejo & Ramin Golestanian

Download PDF
  • Regular Article
  • Open Access
  • Published: 16 July 2019

Stochastic dynamics of dissolving active particles

  • Alexander Chamolly1 &
  • Eric Lauga1 

The European Physical Journal E volume 42, Article number: 88 (2019) Cite this article

  • 544 Accesses

  • 6 Citations

  • 1 Altmetric

  • Metrics details

Abstract.

The design of artificial microswimmers has generated significant research interest in recent years, for promise in applications such as nanomotors and targeted drug-delivery. However, many current designs suffer from a common problem, namely the swimmers remain in the fluid indefinitely, posing risks of clogging and damage. Inspired by recently proposed experimental designs, we investigate mathematically the dynamics of degradable active particles. We develop and compare two distinct chemical models for the decay of a swimmer, taking into account the material composition and nature of the chemical or enzymatic reaction at its surface. These include a model for dissolution without a reaction, as well as models for a reacting swimmer studied in the limit of large and small Damköhler number. A new dimensionless parameter emerges that allows the classification of colloids into ballistic and diffusive type. Using this parameter, we perform an asymptotic analysis to derive expressions for colloid lifetimes and their total mean squared displacement from release and validate these by numerical Monte Carlo simulations of the associated Langevin dynamics. Supported by general scaling relationships, our theoretical results provide new insight into the experimental applicability of a wide range of designs for degradable active colloids.

Graphical abstract

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J. Wang, W. Gao, ACS Nano 6, 5745 (2012)

    Article  Google Scholar 

  2. W. Wang, W. Duan, S. Ahmed, T.E. Mallouk, A. Sen, Nano Today 8, 531 (2013)

    Article  Google Scholar 

  3. B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Annu. Rev. Biomed. Eng. 12, 55 (2010)

    Article  Google Scholar 

  4. J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)

    Article  ADS  Google Scholar 

  5. J.L. Moran, J.D. Posner, Annu. Rev. Fluid Mech. 49, 511 (2017)

    Article  ADS  Google Scholar 

  6. E.M. Purcell, Am. J. Phys. 45, 3 (1977)

    Article  ADS  Google Scholar 

  7. S. Michelin, E. Lauga, J. Fluid Mech. 747, 572 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Golestanian, T. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)

    Article  ADS  Google Scholar 

  9. J.F. Brady, J. Fluid Mech. 667, 216 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Walther, A.H. Mueller, Chem. Rev. 113, 5194 (2013)

    Article  Google Scholar 

  11. S. Ebbens, D. Gregory, G. Dunderdale, J. Howse, Y. Ibrahim, T. Liverpool, R. Golestanian, EPL 106, 58003 (2014)

    Article  ADS  Google Scholar 

  12. W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk, A. Sen, J. Am. Chem. Soc. 128, 14881 (2006)

    Article  Google Scholar 

  13. J.L. Moran, J.D. Posner, J. Fluid Mech. 680, 31 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. G. Gallino, F. Gallaire, E. Lauga, S. Michelin, Adv. Funct. Mater. 28, 1800686 (2018)

    Article  Google Scholar 

  15. F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, J. Guan, Small 11, 2564 (2015)

    Article  Google Scholar 

  16. W. Wang, L.A. Castro, M. Hoyos, T.E. Mallouk, ACS Nano 6, 6122 (2012)

    Article  Google Scholar 

  17. J.G. Gibbs, Y.P. Zhao, Appl. Phys. Lett. 94, 163104 (2009)

    Article  ADS  Google Scholar 

  18. S. Wang, N. Wu, Langmuir 30, 3477 (2014)

    Article  Google Scholar 

  19. L. Zhang, J.J. Abbott, L. Dong, K.E. Peyer, B.E. Kratochvil, H. Zhang, C. Bergeles, B.J. Nelson, Nano Lett. 9, 3663 (2009)

    Article  ADS  Google Scholar 

  20. A. Ghosh, P. Fischer, Nano Lett. 9, 2243 (2009)

    Article  ADS  Google Scholar 

  21. W. Gao, R. Dong, S. Thamphiwatana, J. Li, W. Gao, L. Zhang, J. Wang, ACS Nano 9, 117 (2015)

    Article  Google Scholar 

  22. C. Bächer, L. Schrack, S. Gekle, Phys. Rev. Fluids 2, 013102 (2017)

    Article  ADS  Google Scholar 

  23. A. Sauret, K. Somszor, E. Villermaux, E. Dressaire, Phys. Rev. Fluids 3, 104301 (2018)

    Article  ADS  Google Scholar 

  24. A.L. Fogelson, K.B. Neeves, Annu. Rev. Fluid Mech. 47, 377 (2015)

    Article  ADS  Google Scholar 

  25. W.S. Nesbitt, E. Westein, F.J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, S.P. Jackson, Nat. Med. 15, 665 (2009)

    Article  Google Scholar 

  26. C. Chen, E. Karshalev, J. Guan, J. Wang, Small 14, 1704252 (2018)

    Article  Google Scholar 

  27. C. Chen, E. Karshalev, J. Li, F. Soto, R. Castillo, I. Campos, F. Mou, J. Guan, J. Wang, ACS Nano 10, 10389 (2016)

    Article  Google Scholar 

  28. X. Wang, X.H. Qin, C. Hu, A. Terzopoulou, X.Z. Chen, T.Y. Huang, K. Maniura-Weber, S. Pané, B.J. Nelson, Adv. Funct. Mater. 28, 1804107 (2018)

    Article  Google Scholar 

  29. Y. Tu, F. Peng, A.A. Andree, Y. Men, M. Srinivas, D.A. Wilson, ACS Nano 11, 1957 (2017)

    Article  Google Scholar 

  30. A.W. Woods, J. Fluid Mech. 239, 429 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  31. Y. Zhang, D. Walker, C.E. Lesher, Contrib. Mineral. Petrol. 102, 492 (1989)

    Article  ADS  Google Scholar 

  32. R.C. Kerr, Contrib. Mineral. Petrol. 121, 237 (1995)

    Article  ADS  Google Scholar 

  33. W.M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2014)

  34. S. Michelin, E. Guérin, E. Lauga, Phys. Rev. Fluids 3, 043601 (2018)

    Article  ADS  Google Scholar 

  35. H. Carslaw, J. Jaeger, Conduction of Heat in Solids, 2nd edition (Clarendon Press, Oxford, 1959) p. 75

  36. A. Einstein, Ann. Phys. 17, 549 (1905)

    Article  Google Scholar 

  37. Z. Li, Phys. Rev. E 80, 061204 (2009)

    Article  ADS  Google Scholar 

  38. M. Tatulea-Codrean, E. Lauga, J. Fluid Mech. 856, 921 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, CB3 0WA, Cambridge, UK

    Alexander Chamolly & Eric Lauga

Authors
  1. Alexander Chamolly
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Eric Lauga
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alexander Chamolly.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chamolly, A., Lauga, E. Stochastic dynamics of dissolving active particles. Eur. Phys. J. E 42, 88 (2019). https://doi.org/10.1140/epje/i2019-11854-3

Download citation

  • Received: 27 March 2019

  • Accepted: 11 June 2019

  • Published: 16 July 2019

  • DOI: https://doi.org/10.1140/epje/i2019-11854-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Soft Matter: Colloids and Nanoparticles
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.