Skip to main content
Log in

Creeping motion of a solid particle inside a spherical elastic cavity: II. Asymmetric motion

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

An analytical method is proposed for computing the low-Reynolds-number hydrodynamic mobility function of a small colloidal particle asymmetrically moving inside a large spherical elastic cavity, the membrane of which is endowed with resistance toward shear and bending. In conjunction with the results obtained in the first part (A. Daddi-Moussa-Ider, H. Löwen, S. Gekle, Eur. Phys. J. E 41, 104 (2018)), in which the axisymmetric motion normal to the surface of an elastic cavity is investigated, the general motion for an arbitrary force direction can now be addressed. The elastohydrodynamic problem is formulated and solved using the classic method of images through expressing the hydrodynamic flow fields as a multipole expansion involving higher-order derivatives of the free-space Green’s function. In the quasi-steady limit, we demonstrate that the particle self-mobility function of a particle moving tangent to the surface of the cavity is larger than that predicted inside a rigid stationary cavity of equal size. This difference is justified by the fact that a stationary rigid cavity introduces additional hindrance to the translational motion of the encapsulated particle, resulting in a reduction of its hydrodynamic mobility. Furthermore, the motion of the cavity is investigated, revealing that the translational pair (composite) mobility, which linearly couples the velocity of the elastic cavity to the force exerted on the solid particle, is solely determined by membrane shear properties. Our analytical predictions are favorably compared with fully-resolved computer simulations based on a completed-double-layer boundary integral method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)

    Article  ADS  Google Scholar 

  2. A.Y. Fu, C. Spence, A. Scherer, F.H. Arnold, S.R. Quake, Nat. Biotechnol. 17, 1109 (1999)

    Article  Google Scholar 

  3. H. Lu, S. Gaudet, M.A. Schmidt, K.F. Jensen, Anal. Chem. 76, 5705 (2004)

    Article  Google Scholar 

  4. D. Huh, W. Gu, Y. Kamotani, J.B. Grotberg, S. Takayama, Physiol. Meas. 26, R73 (2005)

    Article  ADS  Google Scholar 

  5. L. Schmid, D.A. Weitz, T. Franke, Lab Chip 14, 3710 (2014)

    Article  Google Scholar 

  6. S. Darvishmanesh, L. Firoozpour, J. Vanneste, P. Luis, J. Degreve, B. Van der Bruggen, Green Chem. 13, 3476 (2011)

    Article  Google Scholar 

  7. A. Adamo, P.L. Heider, N. Weeranoppanant, K.F. Jensen, Ind. Eng. Chem. Res. 52, 10802 (2013)

    Article  Google Scholar 

  8. B. Gutmann, D. Cantillo, C.O. Kappe, Angew. Chem. Int. Ed. 54, 6688 (2015)

    Article  Google Scholar 

  9. Y.L. Colson, M.W. Grinstaff, Adv. Mater. 24, 3878 (2012)

    Article  Google Scholar 

  10. H. Hillaireau, P. Couvreur, Cell. Mol. Life Sci. 66, 2873 (2009)

    Article  Google Scholar 

  11. J. Liu, T. Wei, J. Zhao, Y. Huang, H. Deng, A. Kumar, C. Wang, Z. Liang, X. Ma, X.J. Liang, Biomaterials 91, 44 (2016)

    Article  Google Scholar 

  12. H. Maeda, H. Nakamura, J. Fang, Adv. Drug Deliv. Rev. 65, 71 (2013)

    Article  Google Scholar 

  13. S. Naahidi, M. Jafari, F. Edalat, K. Raymond, A. Khademhosseini, P. Chen, J. Control. Release 166, 182 (2013)

    Article  Google Scholar 

  14. J.M. Rosenholm, C. Sahlgren, M. Linden, Nanoscale 2, 1870 (2010)

    Article  ADS  Google Scholar 

  15. R. Singh, J.W. Lillard, Exp. Mol. Pathol. 86, 215 (2009)

    Article  Google Scholar 

  16. L.M. Bareford, P.W. Swaan, Adv. Drug Deliv. Rev. 59, 748 (2007)

    Article  Google Scholar 

  17. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, Vol. 1 (Springer Netherlands, Dordrecht, Netherlands, 2012)

  18. S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Dover Publications, Mineola, New York, 2013)

  19. L.G. Leal, Annu. Rev. Fluid Mech. 12, 435 (1980)

    Article  ADS  Google Scholar 

  20. J.R. Blake, Math. Proc. Camb. Philos. Soc. 70, 303 (1971)

    Article  ADS  Google Scholar 

  21. C.W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik (Akademische Verlagsgesellschaft, Leipzig, Germany, 1928)

  22. S.F.J. Butler, Math. Proc. Cambridge Philos. Soc. 49, 169 (1953)

    Article  ADS  Google Scholar 

  23. W.D. Collins, Mathematika 1, 125 (1954)

    Article  MathSciNet  Google Scholar 

  24. H. Hasimoto, J. Phys. Soc. Jpn. 11, 793 (1956)

    Article  ADS  Google Scholar 

  25. H. Hasimoto, J. Phys. Soc. Jpn. 61, 3027 (1992)

    Article  ADS  Google Scholar 

  26. H. Hasimoto, Phys. Fluids 9, 1838 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  27. R. Shail, Quart. J. Mech. Appl. Math. 40, 223 (1987)

    Article  MathSciNet  Google Scholar 

  28. R. Shail, S.H. Onslow, Mathematika 35, 233 (1988)

    Article  MathSciNet  Google Scholar 

  29. A. Sellier, Comput. Model. Eng. Sci. 25, 165 (2008)

    Google Scholar 

  30. C. Maul, S. Kim, Phys. Fluids 6, 2221 (1994)

    Article  ADS  Google Scholar 

  31. C. Maul, S. Kim, in The Centenary of a Paper on Slow Viscous Flow by the Physicist H.A. Lorentz (Springer Netherlands, Dordrecht, Netherlands, 1996) pp. 119--130

  32. B.U. Felderhof, A. Sellier, J. Chem. Phys. 136, 054703 (2012)

    Article  ADS  Google Scholar 

  33. D. Tsemakh, O.M. Lavrenteva, A. Nir, Int. J. Multiph. Flow 30, 1337 (2004)

    Article  Google Scholar 

  34. O.M. Lavrenteva, D. Tsemakh, A. Nir, Fluid Dyn. Mater. Process. 1, 131 (2005)

    Google Scholar 

  35. S.Y. Reigh, L. Zhu, F. Gallaire, E. Lauga, Soft Matter 13, 3161 (2017)

    Article  ADS  Google Scholar 

  36. L. Zhu, F. Gallaire, Phys. Rev. Lett. 119, 064502 (2017)

    Article  ADS  Google Scholar 

  37. S.Y. Reigh, E. Lauga, Phys. Rev. Fluids 2, 093101 (2017)

    Article  ADS  Google Scholar 

  38. V.A. Shaik, V. Vasani, A.M. Ardekani, J. Fluid Mech. 851, 187 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Daddi-Moussa-Ider, A. Guckenberger, S. Gekle, Phys. Rev. E 93, 012612 (2016)

    Article  ADS  Google Scholar 

  40. A. Daddi-Moussa-Ider, S. Gekle, Eur. Phys. J. E 41, 19 (2018)

    Article  Google Scholar 

  41. A. Daddi-Moussa-Ider, S. Gekle, Phys. Rev. E 95, 013108 (2017)

    Article  ADS  Google Scholar 

  42. A. Daddi-Moussa-Ider, M. Lisicki, S. Gekle, Phys. Rev. E 95, 053117 (2017)

    Article  ADS  Google Scholar 

  43. A. Daddi-Moussa-Ider, M. Lisicki, S. Gekle, Phys. Fluids 29, 111901 (2017)

    Article  ADS  Google Scholar 

  44. A. Daddi-Moussa-Ider, M. Lisicki, S. Gekle, Acta Mech. 229, 149 (2018)

    Article  MathSciNet  Google Scholar 

  45. A. Daddi-Moussa-Ider, H. Löwen, S. Gekle, Eur. Phys. J. E 41, 104 (2018)

    Article  Google Scholar 

  46. Y.O. Fuentes, S. Kim, D.J. Jeffrey, Phys. Fluids 31, 2445 (1988)

    Article  ADS  Google Scholar 

  47. Y.O. Fuentes, S. Kim, D.J. Jeffrey, Phys. Fluids 1, 61 (1989)

    Article  ADS  Google Scholar 

  48. K. Sekimoto, L. Leibler, Europhys. Lett. 23, 113 (1993)

    Article  ADS  Google Scholar 

  49. S.J. Weekley, S.L. Waters, O.E. Jensen, Q. J. Mech. Appl. Math. 59, 277 (2006)

    Article  Google Scholar 

  50. T. Salez, L. Mahadevan, J. Fluid Mech. 779, 181 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  51. B. Saintyves, T. Jules, T. Salez, L. Mahadevan, Proc. Natl. Acad. Sci. U.S.A. 113, 5847 (2016)

    Article  ADS  Google Scholar 

  52. B. Rallabandi, B. Saintyves, T. Jules, T. Salez, C. Schönecker, L. Mahadevan, H.A. Stone, Phys. Rev. Fluids 2, 074102 (2017)

    Article  ADS  Google Scholar 

  53. A. Daddi-Moussa-Ider, B. Rallabandi, S. Gekle, H.A. Stone, Phys. Rev. Fluids 3, 084101 (2018)

    Article  ADS  Google Scholar 

  54. B. Rallabandi, N. Oppenheimer, M.Y.B. Zion, H.A. Stone, Nat. Phys. 14, 1211 (2018)

    Article  Google Scholar 

  55. R. Skalak, A. Tozeren, R.P. Zarda, S. Chien, Biophys. J. 13, 245 (1973)

    Article  ADS  Google Scholar 

  56. J.B. Freund, Annu. Rev. Fluid Mech. 46, 67 (2014)

    Article  ADS  Google Scholar 

  57. T. Krüger, Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear (Vieweg+Teubner Verlag, Wiesbaden, Germany, 2012)

  58. T. Krüger, F. Varnik, D. Raabe, Comput. Math. Appl. 61, 3485 (2011)

    Article  MathSciNet  Google Scholar 

  59. A.E. Green, J.C. Adkins, Large Elastic Deformations and Non-linear Continuum Mechanics (Oxford University Press, Oxford, UK, 1960)

  60. L. Zhu, PhD Thesis (2014)

  61. E. Lac, D. Barthes-Biesel, N.A. Pelekasis, J. Tsamopoulos, J. Fluid Mech. 516, 303 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  62. W. Helfrich, Z. Naturforsch. C 28, 693 (1973)

    Article  Google Scholar 

  63. K. Berndl, J. Käs, R. Lipowsky, E. Sackmann, U. Seifert, Europhys. Lett. 13, 659 (1990)

    Article  ADS  Google Scholar 

  64. U. Seifert, Adv. Phys. 46, 13 (1997)

    Article  ADS  Google Scholar 

  65. A. Guckenberger, S. Gekle, J. Phys.: Condens. Matter 29, 203001 (2017)

    ADS  Google Scholar 

  66. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. 1 (Interscience Publishers, New York, 1963)

  67. M. Deserno, Chem. Phys. Lipids 185, 11 (2015)

    Article  Google Scholar 

  68. J.R. Blake, A.T. Chwang, J. Eng. Math. 8, 23 (1974)

    Article  Google Scholar 

  69. D. Zill, W.S. Wright, M.R. Cullen, Advanced Engineering Mathematics (Jones & Bartlett Learning, Burlington, Massachusetts, 2011)

  70. H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, UK, 1932)

  71. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Vol. 1 (Dover Publications, Mineola, New York, 1972)

  72. A.R. Edmonds, Angular Momentum in Quantum Mechanics, Vol. 4 (Princeton University Press, Princeton, New Jersey, 1996)

  73. Y. Rui, S. Wang, P.S. Low, D.H. Thompson, J. Am. Chem. Soc. 120, 11213 (1998)

    Article  Google Scholar 

  74. V.P. Torchilin, Nat. Rev. Drug Discov. 4, 145 (2005)

    Article  Google Scholar 

  75. C. Zylberberg, S. Matosevic, Drug Deliv. 23, 3319 (2016)

    Article  Google Scholar 

  76. T. Bickel, Eur. Phys. J. E 20, 379 (2006)

    Article  Google Scholar 

  77. T. Bickel, Phys. Rev. E 75, 041403 (2007)

    Article  ADS  Google Scholar 

  78. J.W. Swan, J.F. Brady, Phys. Fluids 19, 113306 (2007)

    Article  ADS  Google Scholar 

  79. J.W. Swan, J.F. Brady, Phys. Fluids 22, 103301 (2010)

    Article  ADS  Google Scholar 

  80. C. Aponte-Rivera, R.N. Zia, Phys. Rev. Fluids 1, 023301 (2016)

    Article  ADS  Google Scholar 

  81. C. Aponte-Rivera, Y. Su, R.N. Zia, J. Fluid Mech. 836, 413 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  82. C. Aponte-Rivera, PhD Thesis, Cornell University, USA (2017)

  83. N.L. Carothers, Real Analysis (Cambridge University Press, Cambridge, UK, 2000)

  84. P. Billingsley, Convergence of Probability Measures (John Wiley & Sons, Hoboken, New Jersey, 2013)

  85. S.H. Lee, R.S. Chadwick, L.G. Leal, J. Fluid Mech. 93, 705 (1979)

    Article  ADS  Google Scholar 

  86. C. Pozrikidis, J. Comput. Phys. 169, 250 (2001)

    Article  ADS  Google Scholar 

  87. A. Daddi-Moussa-Ider, A. Guckenberger, S. Gekle, Phys. Fluids 28, 071903 (2016)

    Article  ADS  Google Scholar 

  88. A. Guckenberger, M.P. Schraml, P.G. Chen, M. Leonetti, S. Gekle, Comput. Phys. Commun. 207, 1 (2016)

    Article  ADS  Google Scholar 

  89. B.U. Felderhof, Phys. Rev. E 89, 033001 (2014)

    Article  ADS  Google Scholar 

  90. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1999)

  91. G. Cipparrone, I. Ricardez-Vargas, P. Pagliusi, C. Provenzano, Opt. Express 18, 6008 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hoell.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoell, C., Löwen, H., Menzel, A.M. et al. Creeping motion of a solid particle inside a spherical elastic cavity: II. Asymmetric motion. Eur. Phys. J. E 42, 89 (2019). https://doi.org/10.1140/epje/i2019-11853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11853-4

Keywords

Navigation