Skip to main content
Log in

The thermal jamming transition of soft harmonic disks in two dimensions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

By exploring the properties of the energy landscape of a bidisperse system of soft harmonic disks in two dimensions we determine the thermal jamming transition. To be specific, we study whether the ground state of the system where the particles do not overlap can be reached within a reasonable time. Starting with random initial configurations, the energy landscape is probed by energy minimization steps as in case of athermal jamming and in addition steps where an energy barrier can be crossed with a small but non-zero probability. For random initial conditions we find that as a function of packing fraction the thermal jamming transition, i.e. the transition from a state where all overlaps can be removed to an effectively non-ergodic state where one cannot get rid of the overlaps, occurs at a packing fraction of \(\phi_{G} = 0.74\), which is smaller than the transition packing fraction of athermal jamming at \(\phi_{J} = 0.842\). Furthermore, we show that the thermal jamming transition is in the universality class of directed percolation and therefore is fundamentally different from the athermal jamming transition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)

    Article  ADS  Google Scholar 

  2. G.L. Hunter, E.R. Weeks, Rep. Prog. Phys. 75, 066501 (2012)

    Article  ADS  Google Scholar 

  3. C.S. O’Hern, S.A. Langer, A.J. Liu, S.R. Nagel, Phys. Rev. Lett. 88, 075507 (2002)

    Article  ADS  Google Scholar 

  4. C.S. O’Hern, S.A. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  5. P. Chaudhuri, L. Berthier, S. Sastry, Phys. Rev. Lett. 104, 165701 (2010)

    Article  ADS  Google Scholar 

  6. M. Maiti, M. Schmiedeberg, Sci. Rep. 8, 1837 (2018)

    Article  ADS  Google Scholar 

  7. P.K. Morse, E.I. Corwin, Phys. Rev. Lett. 119, 118003 (2017)

    Article  ADS  Google Scholar 

  8. L. Milz, M. Schmiedeberg, Phys. Rev. E 88, 062308 (2013)

    Article  ADS  Google Scholar 

  9. M. Maiti, M. Schmiedeberg, J. Phys.: Condens. Matter 31, 165101 (2019)

    ADS  Google Scholar 

  10. E. Flenner, G. Szamel, Nat. Commun. 6, 7392 (2015)

    Article  ADS  Google Scholar 

  11. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  12. H. Shiba, Y. Yamada, T. Kawasaki, K. Kim, Phys. Rev. Lett. 117, 245701 (2016)

    Article  ADS  Google Scholar 

  13. S. Vivek, C.P. Kelleher, P.M. Chaikin, E.R. Weeks, Proc. Natl. Acad. Sci. U.S.A. 114, 1850 (2017)

    Article  ADS  Google Scholar 

  14. B. Illing, S. Fritschi, H. Kaiser, C.L. Klix, G. Maret, P. Keim, Proc. Natl. Acad. Sci. U.S.A. 114, 1856 (2017)

    Article  ADS  Google Scholar 

  15. W. Kauzmann, Chem. Rev. 43, 219 (1948)

    Article  Google Scholar 

  16. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  17. H. Hinrichsen, Adv. Phys. 49, 815 (2000)

    Article  ADS  Google Scholar 

  18. A. Donev, F.H. Stillinger, S. Torquato, Phys. Rev. Lett. 96, 225502 (2006)

    Article  ADS  Google Scholar 

  19. M. Bayer, J.M. Brader, F. Ebert, M. Fuchs, E. Lange, G. Maret, R. Schilling, M. Sperl, J.P. Wittmer, Phys. Rev. E 76, 011508 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. C. Reichhardt, C.J.O. Reichhardt, Phys. Rev. Lett. 103, 168301 (2009)

    Article  ADS  Google Scholar 

  21. A. Ikeda, L. Berthier, P. Sollich, Phys. Rev. Lett. 109, 018301 (2012)

    Article  ADS  Google Scholar 

  22. X. Wang, W. Zheng, L. Wang, N. Xu, Phys. Rev. Lett. 114, 035502 (2015)

    Article  ADS  Google Scholar 

  23. L. Berthier, T.A. Witten, EPL 86, 10001 (2009)

    Article  ADS  Google Scholar 

  24. L. Berthier, T.A. Witten, Phys. Rev. E 80, 021502 (2009)

    Article  ADS  Google Scholar 

  25. T.K. Haxton, M. Schmiedeberg, A.J. Liu, Phys. Rev. E 83, 031503 (2011)

    Article  ADS  Google Scholar 

  26. M. Schmiedeberg, T.K. Haxton, S.R. Nagel, A.J. Liu, Europhys. Lett. 96, 36010 (2011)

    Article  ADS  Google Scholar 

  27. L. Berthier, A.J. Moreno, G. Szamel, Phys. Rev. E 82, 060501(R) (2010)

    Article  ADS  Google Scholar 

  28. M. Schmiedeberg, Phys. Rev. E 87, 052310 (2013)

    Article  ADS  Google Scholar 

  29. R. Miyazaki, T. Kawasaki, K. Miyazaki, Phys. Rev. Lett. 117, 165701 (2016)

    Article  ADS  Google Scholar 

  30. D.J. Koeze, B.P. Tighe, Phys. Rev. Lett. 121, 188002 (2018)

    Article  ADS  Google Scholar 

  31. J.M. van Doorn, J. Bronkhorst, R. Higler, T. van de Laar, J. Sprakel, Phys. Rev. Lett. 118, 188001 (2017)

    Article  ADS  Google Scholar 

  32. M. Kohl, R.F. Capellmann, M. Laurati, S.U. Egelhaaf, M. Schmiedeberg, Nat. Commun. 7, 11817 (2016)

    Article  ADS  Google Scholar 

  33. A. Heuer, C.F.E. Schroer, D. Diddens, C. Rehwald, M. Blank-Burian, Eur. Phys. J. ST 226, 3061 (2017)

    Article  Google Scholar 

  34. M. Blank-Burian, A. Heuer, Phys. Rev. E 98, 033002 (2018)

    Article  ADS  Google Scholar 

  35. M. Maiti, M. Schmiedeberg, Energy landscape description of the clustering transition for active soft spheres, arXiv:1812.06839

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schmiedeberg.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, M., Schmiedeberg, M. The thermal jamming transition of soft harmonic disks in two dimensions. Eur. Phys. J. E 42, 38 (2019). https://doi.org/10.1140/epje/i2019-11802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11802-3

Keywords

Navigation