Skip to main content

Advertisement

Log in

Dielectric properties of wet steam based on a double relaxation time model

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The last stages of most steam turbines operate in wet steam, resulting in water erosion of the rotor blades and the reduction of turbine efficiency. Accurate measurement of steam wetness is the key to ensure an efficient and stable operation of steam turbines. The equivalent complex permittivity model of wet steam was established by Maxwell-Wagner non-homogeneous dielectric theory, and the complex permittivity distribution of frequency and temperature changes of saturated water, dry saturated steam, and wet steam was derived. The measurement experiments verified the above properties of dry saturated steam and wet steam. The complex permittivity of the wet steam is similar to that for the dry saturated steam. The real part increases with increasing frequency and temperature. When the frequency is large or the temperature is low, the real part approaches 1. The imaginary part increases first and then decreases with the increase of frequency. In addition, with the increase of temperature, the imaginary part becomes larger. When the temperature is low, the imaginary part is close to 0, which is independent of the frequency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Vatanmakan, E. Lakzian, M.R. Mahpeykar, Energy 147, 701 (2018)

    Article  Google Scholar 

  2. X. Yu, Z. Xiao, D. Xie, C. Wang, C. Wang, Int. J. Heat Mass Transfer 84, 642 (2015)

    Article  Google Scholar 

  3. G.I. Ilieva, Eng. Fail. Anal. 70, 90 (2016)

    Article  Google Scholar 

  4. V. Petr, M. Kolovratnik, Proc. Inst. Mech. Eng. Part A: J. Power Energy 228, 206 (2014)

    Article  Google Scholar 

  5. M. Schatz, T. Eberle, M. Gruebel, J. Starzmann, D.M. Vogt, N. Suerken, J. Eng. Gas Turbines Power 137, 64 (2015)

    Article  Google Scholar 

  6. J. Starzmann, M.V. Casey, J.F. Mayer, J. Power Energy 228, 216 (2013)

    Article  Google Scholar 

  7. D. Cirmirakis, A. Demosthenous, N. Saeidi, IEEE Sens. J. 13, 900 (2013)

    Article  ADS  Google Scholar 

  8. H. Matbouly, N. Boubekeur, F. Domingue, IEEE Trans. Microw. Theory Techn. 63, 4150 (2015)

    Article  ADS  Google Scholar 

  9. V.N. Makhlaichuk, N.P. Malomuzh, J. Mol. Liq. 253, 330 (2018)

    Article  Google Scholar 

  10. I.V. Vancea, Int. J. Geom. Methods Mod. Phys. 15, 147 (2017)

    Google Scholar 

  11. J. Zhou, F. Schmid, Eur. Phys. J. E 36, 216 (2013)

    Article  Google Scholar 

  12. L. Xu, J. Yuan, Appl. Therm. Eng. 76, 357 (2015)

    Article  Google Scholar 

  13. L. Frunza, A. Schönhals, H. Kosslick, Eur. Phys. J. E 26, 76 (2008)

    Article  Google Scholar 

  14. J.C. Del Valle, C. Arago, M.I. Marques, J.A. Gonzalo, Ferroelectrics 466, 166 (2014)

    Article  Google Scholar 

  15. E. Sanchez, C.F. Torres, P. Guillen, G. Larrazabal, Math. Comput. Model. 57, 2140 (2013)

    Article  Google Scholar 

  16. M. Agarwal, A.K. Behera, M.K. Meshram, Appl. Phys. A 122, 1 (2016)

    Google Scholar 

  17. Z. Han, K. Yang, S. Tian, Turbine Technol. 549, (2003)

  18. R.F. Tian, L.P. Du, P.F. Zhang, Asia-Pacific Power and Energy Engineering Conference (APPEE

  19. H.J. Kretzschmar, A.H. Harvey, K. Knobloch, J. Eng. Gas Turbines Power 131, 4 (2009)

    Article  Google Scholar 

  20. K. Cui, Y. Song, H. Chen, J. Braz. Soc. Mech. Sci. Eng. 38, 1 (2016)

    Article  Google Scholar 

  21. Z. Han, J. Qian, International Conference on Electronic Measurement & Instruments (IEEE, 2009) ISBN:1-604-1-607

  22. V. Hric, J. Halama, International Conference on Numerical Analysis and Applied Mathematics (AIP Publishing LLC, 2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangbo Qian.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Gu, Q., Yao, H. et al. Dielectric properties of wet steam based on a double relaxation time model. Eur. Phys. J. E 42, 22 (2019). https://doi.org/10.1140/epje/i2019-11783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11783-1

Keywords

Navigation