Skip to main content
Log in

Numerical investigation of buoyancy balance effect on thermosolutal convection in a horizontal annular porous cavity

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The effect of cooperating and opposite buoyancy forces on the flow structure and the heat and mass transfer rates is numerically investigated in a horizontal annular space of radius ratio R = 2, filled with a porous medium saturated by a binary fluid. Uniform and constant temperatures and concentrations are imposed along the active walls. The steady-state solutions have been obtained using the discretization of the governing equations with the Centered Finite Difference method based on the ADI scheme. The influence of the dimensionless thermosolutal parameters, namely Darcy-Rayleigh numbe, Ra, Lewis number, Le, and buoyancy ratio, N , is investigated. The study is focused on the effect of Ra and Le on the steady-state solution under the cooperating (N = 2) and opposite (N = -2) buoyancy forces cases. The increase in Rayleigh number in the opposite case results in a full development of the convection and gives rise to multicellular flow structures. The critical Rayleigh number values corresponding to the onset of this flow pattern are determined for a large range of Lewis number values by using two initial conditions types. On the other hand, the unicellular flow dominates the cooperating case whatever the Darcy-Rayleigh and Lewis numbers values. The heat and solutal transfer behaviors are also considered.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Pop, D.B. Ingham, Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media (Pergamon, Oxford, 2001)

  2. D.A. Nield, A. Bejan, Convection in Porous Media, fourth edition (Springer-Verlag, New York, 2013)

  3. K. Vafai, Handbook of Porous Media, third edition (Taylor & Francis, New York, 2015)

  4. O.V. Trevisan, A. Bejan, Int. J. Heat Mass Transfer 28, 1597 (1985)

    Article  Google Scholar 

  5. O.V. Trevisan, A. Bejan, Int. J. Heat Mass Transfer 29, 403 (1986)

    Article  Google Scholar 

  6. S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, New York, 1980)

  7. M. Mamou, P. Vasseur, E. Bilgen, Int. J. Heat Mass Transfer 38, 1787 (1995)

    Article  Google Scholar 

  8. L. Kalla, P. Vasseur, R. Bennacer, H. Beji, R. Duval, Int. Commun. Heat Mass Transfer 28, 1 (2001)

    Article  Google Scholar 

  9. M. Bourich, A. Amahmid, M. Hasnaoui, Energy Convers. Manag. 45, 1655 (2004)

    Article  Google Scholar 

  10. F. Alavyoon, Int. J. Heat Mass Transfer 36, 2479 (1993)

    Article  Google Scholar 

  11. M. Marcoux, M.C. Charrier-Mojtabi, M. Azaiez, Int. J. Heat Mass Transfer 42, 2313 (1999)

    Article  Google Scholar 

  12. H. Beji, R. Bennacer, R. Duval, P. Vasseur, Numer. Heat Transfer, Part A: Appl. 36, 153 (1999)

    Article  ADS  Google Scholar 

  13. J.C. Kalita, A.K. Dass, Int. J. Heat Mass Transfer 5, 357 (2011)

    Google Scholar 

  14. A. Amahmid, M. Hasnaoui, M. Mamou, P. Vasseur, Heat Mass Transfer 35, 409 (1999)

    Article  ADS  Google Scholar 

  15. M.C. Charrier-Mojtabi, M. Karimi-Fard, M. Azaiez, A. Mojtabi, J. Porous Media 1, 107 (1985)

    Article  Google Scholar 

  16. Z. Alloui, P. Vasseur, Comput. Therm. Sci. Int. J. 3, 407 (2011)

    Article  Google Scholar 

  17. A. Ja, A. Cheddadi, Fluid Dyn. Mater. Process. 13, 235 (2017)

    Google Scholar 

  18. K. Ragui, A. Boutra, R. Bennacer, N. Labsi, Y.K. Benkahla, Heat Mass Transfer 54, 2061 (2018)

    Article  ADS  Google Scholar 

  19. J.W. Taunton, E.N. Lightfoot, Phys. Fluids 15, 748 (1972)

    Article  ADS  Google Scholar 

  20. J.P.B. Mota, E. Saatdjian, J. Heat Transfer 116, 621 (1994)

    Article  Google Scholar 

  21. J. Belabid, A. Cheddadi, Phys. Chem. News 70, 67 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkhalek Cheddadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ja, A., Cheddadi, A. Numerical investigation of buoyancy balance effect on thermosolutal convection in a horizontal annular porous cavity. Eur. Phys. J. E 42, 9 (2019). https://doi.org/10.1140/epje/i2019-11768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11768-0

Keywords

Navigation