Skip to main content
Log in

Dynamics and energy dissipation of a rigid dipole driven by the RF-field in a viscous fluid: Deterministic approach

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The deterministic rotation of a ferromagnetic nanoparticle in a fluid is considered. The heating arising from viscous friction of a nanoparticle driven by circularly and linearly polarized alternating magnetic fields is investigated. Since the power loss of such fields depends on the character of the induced motion of a nanoparticle, all types of particle trajectories are described in detail. The dependences of the power loss on the alternating field parameters are determined. The optimal conditions for obtaining the maximum heating efficiency are discussed. The effect of heating enhancement by a static field is analyzed. The results obtained can be actual for the description of heating in the magnetic fluid hyperthermia cancer treatment, when the size of the particles used is a few tens of nanometers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, 1985)

  2. M.I. Shliomis, Sov. Phys. Usp. 17, 153 (1974)

    Article  ADS  Google Scholar 

  3. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 36, R167 (2003)

    Article  ADS  Google Scholar 

  4. Omid Veiseh, Jonathan W. Gunn, Miqin Zhang, Adv. Drug Deliv. Rev. 62, 284 (2010)

    Article  Google Scholar 

  5. Andreas Jordan, Regina Scholz, Peter Wust, Horst Fhling, Roland Felix, J. Magn. & Magn. Mater. 201, 413 (1999)

    Article  ADS  Google Scholar 

  6. Silvio Dutz, Rudolf Hergt, Nanotechnology 25, 452001 (2014)

    Article  Google Scholar 

  7. Bo Tian, Zhen Qiu, Jing Ma, Teresa Zardn Gmez de la Torre, Christer Johansson, Peter Svedlindh, Mattias Strmberg, Biosens. Bioelectron. 86, 420 (2016)

    Article  Google Scholar 

  8. Bo Tian, Teresa Zardan Gomez de la Torre, Marco Donolato, Mikkel Fougt Hansen, Peter Svedlindh, Mattias Stromberg, Anal. Methods 8, 5009 (2016)

    Article  Google Scholar 

  9. Haiwen Xi, Kai-Zhong Gao, Yiming Shi, Song Xue, J. Phys. D: Appl. Phys. 39, 4746 (2006)

    Article  ADS  Google Scholar 

  10. N.A. Usov, B.Ya. Liubimov, J. Appl. Phys. 112, 023901 (2012)

    Article  ADS  Google Scholar 

  11. Hedyeh Keshtgar, Simon Streib, Akashdeep Kamra, Yaroslav M. Blanter, Gerrit E.W. Bauer, Phys. Rev. B 95, 134447 (2017)

    Article  ADS  Google Scholar 

  12. T.V. Lyutyy, O.M. Hryshko, A.A. Kovner, E.S. Denisova, J. Nano-Electron. Phys. 8, 04086 (2016)

    Article  Google Scholar 

  13. T.V. Lyutyy, O.M. Hryshko, A.A. Kovner, J. Magn. & Magn. Mater. 446, 87 (2018) (Supplement C)

    Article  ADS  Google Scholar 

  14. Klaus D. Usadel, Phys. Rev. B 95, 104430 (2017)

    Article  ADS  Google Scholar 

  15. Jürgen Weizenecker, Phys. Med. Biol. 63, 035004 (2018)

    Article  Google Scholar 

  16. Claudio Scherer, Hans-Georg Matuttis, Phys. Rev. E 63, 011504 (2000)

    Article  Google Scholar 

  17. Yu.L. Raikher, V.I. Stepanov, J. Exp. Theor. Phys. 112, 173 (2011)

    Article  ADS  Google Scholar 

  18. Yu.L. Raikher, V.I. Stepanov, Phys. Rev. E 83, 021401 (2011)

    Article  ADS  Google Scholar 

  19. B.U. Felderhof, R.B. Jones, J. Phys.: Condens. Matter 15, 4011 (2003)

    ADS  Google Scholar 

  20. D. Soto-Aquino, C. Rinaldi, J. Magn. & Magn. Mater. 393, 46 (2015)

    Article  ADS  Google Scholar 

  21. T.V. Lyutyy, S.I. Denisov, V.V. Reva, Yu.S. Bystrik, Phys. Rev. E 92, 042312 (2015)

    Article  ADS  Google Scholar 

  22. T.V. Lyutyy, V.V. Reva, Phys. Rev. E 97, 052611 (2018)

    Article  ADS  Google Scholar 

  23. J.J. Newman, R.B. Yarbrough, J. Appl. Phys. 39, 5566 (1968)

    Article  ADS  Google Scholar 

  24. W. Andrä, H. Nowak, Magnetism in Medicine: A Handbook (Wiley-VCH Verlag GmbH & Co. KGaA, 2007) https://doi.org/onlinelibrary.wiley.com/doi/book/10.1002/9783527610174

  25. T.V. Lyutyy, S.I. Denisov, A.Yu. Peletskyi, C. Binns, Phys. Rev. B 91, 054425 (2015)

    Article  ADS  Google Scholar 

  26. M. Ibrahim Dar, S.A. Shivashankar, RSC Adv. 4, 4105 (2014)

    Article  Google Scholar 

  27. William Fuller Brown, Phys. Rev. 130, 1677 (1963)

    Article  Google Scholar 

  28. S.I. Denisov, A.N. Yunda, Physica B: Condens. Matter 245, 282 (1998)

    Article  ADS  Google Scholar 

  29. S.I. Denisov, T.V. Lyutyy, P. Hänggi, Phys. Rev. Lett. 97, 227202 (2006)

    Article  ADS  Google Scholar 

  30. Herbert Goldstein, Classical Mechanics (Pearson Education, 2002) https://doi.org/books.google.com.ua/books?id=Spy6xHWFJIEC

  31. Moshe Gitterman, The Chaotic Pendulum, 5 Toh Tuck Link (World Scientific, Singapore, 2010) https://doi.org/www.worldscientific.com/doi/abs/10.1142/7861

  32. Y.L. Raikher, M.I. Shliomis, Adv. Chem. Phys. 87, 595 (1994)

    Google Scholar 

  33. Giorgio Bertotti, Claudio Serpico, Isaak D. Mayergoyz, Phys. Rev. Lett. 86, 724 (2001)

    Article  ADS  Google Scholar 

  34. T.V. Lyutyy, A.Yu. Polyakov, A.V. Rot-Serov, C. Binns, J. Phys.: Condens. Matter 21, 396002 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Lyutyy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyutyy, T.V. Dynamics and energy dissipation of a rigid dipole driven by the RF-field in a viscous fluid: Deterministic approach. Eur. Phys. J. E 41, 142 (2018). https://doi.org/10.1140/epje/i2018-11756-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11756-x

Keywords

Navigation