Skip to main content

Advertisement

SpringerLink
  • The European Physical Journal E
  • Journal Aims and Scope
  • Submit to this journal
Effective squirmer models for self-phoretic chemically active spherical colloids
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Active colloids under geometrical constraints in viscoelastic media

11 March 2021

N Narinder, Wei-jing Zhu & Clemens Bechinger

Stochastic dynamics of dissolving active particles

16 July 2019

Alexander Chamolly & Eric Lauga

Conditions for the propulsion of a colloid surrounded by a mesoscale phase separation

02 December 2022

Jeanne Decayeux, Marie Jardat, … Vincent Dahirel

From hydrodynamic lubrication to many-body interactions in dense suspensions of active swimmers

14 June 2018

Natsuhiko Yoshinaga & Tanniemola B. Liverpool

Coupled Self-Organized Hydrodynamics and Stokes Models for Suspensions of Active Particles

31 January 2019

Pierre Degond, Sara Merino-Aceituno, … Hui Yu

Active spheres induce Marangoni flows that drive collective dynamics

01 February 2021

Martin Wittmann, Mihail N. Popescu, … Juliane Simmchen

Formation of self-propelling clusters starting from randomly dispersed Brownian particles

01 August 2020

Prabha Chuphal, Ishwar Venugopal & Snigdha Thakur

Simulating squirmers with multiparticle collision dynamics

15 May 2018

Andreas Zöttl & Holger Stark

Hydrodynamic effects on the liquid-hexatic transition of active colloids

13 September 2022

G. Negro, C. B. Caporusso, … A. Suma

Download PDF

Associated Content

Part of a collection:

Flowing Matter, Problems and Applications

  • Regular Article
  • Open Access
  • Published: 12 December 2018

Effective squirmer models for self-phoretic chemically active spherical colloids

  • M. N. Popescu1,2,
  • W. E. Uspal1,2,
  • Z. Eskandari1,2,
  • M. Tasinkevych3 &
  • …
  • S. Dietrich1,2 

The European Physical Journal E volume 41, Article number: 145 (2018) Cite this article

  • 899 Accesses

  • 24 Citations

  • Metrics details

Abstract.

Various aspects of self-motility of chemically active colloids in Newtonian fluids can be captured by simple models for their chemical activity plus a phoretic-slip hydrodynamic boundary condition on their surface. For particles of simple shapes (e.g., spheres) --as employed in many experimental studies-- which move at very low Reynolds numbers in an unbounded fluid, such models of chemically active particles effectively map onto the well studied so-called hydrodynamic squirmers (S. Michelin and E. Lauga, J. Fluid Mech. 747, 572 (2014)). Accordingly, intuitively appealing analogies of “pusher/puller/neutral” squirmers arise naturally. Within the framework of self-diffusiophoresis we illustrate the above-mentioned mapping and the corresponding flows in an unbounded fluid for a number of choices of the activity function (i.e., the spatial distribution and the type of chemical reactions across the surface of the particle). We use the central collision of two active particles as a simple, paradigmatic case for demonstrating that in the presence of other particles or boundaries the behavior of chemically active colloids may be qualitatively different, even in the far field, from the one exhibited by the corresponding “effective squirmer”, obtained from the mapping in an unbounded fluid. This emphasizes that understanding the collective behavior and the dynamics under geometrical confinement of chemically active particles necessarily requires to explicitly account for the dependence of the hydrodynamic interactions on the distribution of chemical species resulting from the activity of the particles.

Graphical abstract

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. R.F. Ismagilov, A. Schwartz, N. Bowden, G.M. Whitesides, Angew. Chem. Int. Ed. 41, 652 (2002)

    Article  Google Scholar 

  2. W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo, Y.Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)

    Article  Google Scholar 

  3. G.A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, Adv. Mater. 17, 3011 (2005)

    Article  Google Scholar 

  4. W.F. Paxton, S. Sundararajan, T.E. Mallouk, A. Sen, Angew. Chem. Int. Ed. 45, 5420 (2006)

    Article  Google Scholar 

  5. W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk, A. Sen, J. Am. Chem. Soc. 128, 14881 (2006)

    Article  Google Scholar 

  6. A.A. Solovev, Y.F. Mei, E.B. Urena, G.S. Huang, O.G. Schmidt, Small 5, 1688 (2009)

    Article  Google Scholar 

  7. T. Mirkovic, N.S. Zacharia, G.D. Scholes, G.A. Ozin, Small 6, 159 (2010)

    Article  Google Scholar 

  8. S. Fournier-Bidoz, A.C. Arsenault, I. Manners, G.A. Ozin, Chem. Commun. 0, 441 (2005)

    Article  Google Scholar 

  9. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    Article  ADS  Google Scholar 

  10. G. Volpe, I. Buttinoni, D. Vogt, H.J. Kümmerer, C. Bechinger, Soft Matter 7, 8810 (2011)

    Article  ADS  Google Scholar 

  11. S. Ebbens, M.H. Tu, J.R. Howse, R. Golestanian, Phys. Rev. E 85, 020401(R) (2012)

    Article  ADS  Google Scholar 

  12. F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013)

    Article  ADS  Google Scholar 

  13. I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)

    Article  ADS  Google Scholar 

  14. T.C. Lee, M. Alarcón-Correa, C. Miksch, K. Hahn, J.G. Gibbs, P. Fischer, Nano Lett. 14, 2407 (2014)

    Article  ADS  Google Scholar 

  15. S. Ebbens, D.A. Gregory, G. Dunderdale, J.R. Howse, Y. Ibrahim, T.B. Liverpool, R. Golestanian, EPL 106, 58003 (2014)

    Article  ADS  Google Scholar 

  16. B. ten Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014)

    Article  ADS  Google Scholar 

  17. X. Ma, S. Jang, M.N. Popescu, W.E. Uspal, A. Miguel-López, K. Hahn, D.P. Kim, S. Sánchez, ACS Nano 10, 8751 (2016)

    Article  Google Scholar 

  18. S. Herminghaus, C.C. Maas, C. Krüger, S. Thutupalli, L. Goehring, C. Bahr, Soft Matter 10, 7008 (2014)

    Article  ADS  Google Scholar 

  19. R. Seemann, J.B. Fleury, C.C. Maas, Eur. Phys. J. ST 225, 2227 (2016)

    Article  Google Scholar 

  20. K. Kroy, D. Chakraborty, F. Cichos, Eur. Phys. J. ST 225, 2207 (2016)

    Article  Google Scholar 

  21. C. Lozano, B. ten Hagen, H. Löwen, C. Bechinger, Nat. Commun. 7, 12828 (2016)

    Article  ADS  Google Scholar 

  22. R. Golestanian, T.B. Liverpool, A. Ajdari, Phys. Rev. Lett. 94, 220801 (2005)

    Article  ADS  Google Scholar 

  23. R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)

    Article  ADS  Google Scholar 

  24. G.R. Rückner, R. Kapral, Phys. Rev. Lett. 98, 150603 (2007)

    Article  ADS  Google Scholar 

  25. F. Jülicher, J. Prost, Eur. Phys. J. E 29, 27 (2009)

    Article  Google Scholar 

  26. M.N. Popescu, M. Tasinkevych, S. Dietrich, EPL 95, 28004 (2011)

    Article  ADS  Google Scholar 

  27. B. Sabass, U. Seifert, J. Chem. Phys. 136, 064508 (2012)

    Article  ADS  Google Scholar 

  28. B. Sabass, U. Seifert, J. Chem. Phys. 136, 214507 (2012)

    Article  ADS  Google Scholar 

  29. R. Kapral, J. Chem. Phys. 138, 202901 (2013)

    Article  Google Scholar 

  30. N. Sharifi-Mood, J. Koplik, C. Maldarelli, Phys. Fluids 25, 012001 (2013)

    Article  ADS  Google Scholar 

  31. B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011)

    ADS  Google Scholar 

  32. S. Michelin, E. Lauga, Eur. Phys. J. E 38, 7 (2015)

    Article  Google Scholar 

  33. J. Hu, A. Wysocki, R.G. Winkler, G. Gompper, Sci. Rep. 5, 9586 (2015)

    Article  ADS  Google Scholar 

  34. M.N. Popescu, W.E. Uspal, S. Dietrich, Eur. Phys. J. ST 225, 2189 (2016)

    Article  Google Scholar 

  35. A. Zöttl, H. Stark, J. Phys.: Condens. Matter 28, 253001 (2016)

    ADS  Google Scholar 

  36. J. de Graaf, G. Rempfer, C. Holm, IEEE Trans. NanoBiosci. 14, 272 (2015)

    Article  Google Scholar 

  37. G. Oshanin, M.N. Popescu, S. Dietrich, J. Phys. A 50, 134001 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  38. P.E. Lammert, V.H. Crespi, A. Nourhani, J. Fluid Mech. 802, 294 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  39. A.T. Brown, W.C.K. Poon, C. Holm, J. de Graaf, Soft Matter 13, 1200 (2017)

    Article  ADS  Google Scholar 

  40. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    Article  ADS  Google Scholar 

  41. S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)

    Article  ADS  Google Scholar 

  42. Y. Hong, D. Velegol, N. Chaturvedi, A. Sen, Phys. Chem. Chem. Phys. 12, 1423 (2010)

    Article  Google Scholar 

  43. J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)

    Article  ADS  Google Scholar 

  44. C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)

    Article  ADS  Google Scholar 

  45. J.L. Moran, J.D. Posner, Annu. Rev. Fluid Mech. 49, 511 (2016)

    Article  ADS  Google Scholar 

  46. B.V. Derjaguin, Y.I. Yalamov, A.I. Storozhilova, J. Colloid Interface Sci. 22, 117 (1966)

    Article  ADS  Google Scholar 

  47. J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)

    Article  ADS  Google Scholar 

  48. C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (CRC Press, Boca Raton, 2002)

  49. J. Happel, H. Brenner, Low Reynolds number hydrodynamics (Noordhoff Int. Pub., Leyden, The Netherlands, 1973)

  50. M.J. Lighthill, Commun. Pure Appl. Math. 5, 109 (1952)

    Article  Google Scholar 

  51. J.R. Blake, J. Fluid Mech. 46, 199 (1971)

    Article  ADS  Google Scholar 

  52. O.S. Pak, E. Lauga, J. Eng. Math. 88, 1 (2014)

    Article  Google Scholar 

  53. E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Biophys. J. 90, 400 (2006)

    Article  ADS  Google Scholar 

  54. A.P. Berke, L. Turner, H.C. Berg, E. Lauga, Phys. Rev. Lett. 101, 038102 (2008)

    Article  ADS  Google Scholar 

  55. D. Lopez, E. Lauga, Phys. Fluids 26, 071902 (2014)

    Article  ADS  Google Scholar 

  56. A.J.T.M. Mathijssen, A. Doostmohammadi, J.M. Yeomans, T.N. Shendruk, J. Fluid Mech. 806, 35 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  57. R. Matas Navarro, I. Pagonabarraga, J. Non-Newton. Fluid Mech. 165, 946 (2010)

    Article  Google Scholar 

  58. K. Ishimoto, E.A. Gaffney, Phys. Rev. E 88, 062702 (2013)

    Article  ADS  Google Scholar 

  59. J. de Graaf, A.J.T.M. Mathijssen, M. Fabritius, H. Menke, C. Holm, T.N. Shendruk, Soft Matter 12, 4704 (2016)

    Article  ADS  Google Scholar 

  60. J.S. Lintuvuori, A.T. Brown, K. Stratford, D. Marenduzzo, Soft Matter 12, 7959 (2016)

    Article  ADS  Google Scholar 

  61. S. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  62. S.E. Spagnolie, G.R. Moreno-Flores, D. Bartolo, E. Lauga, Soft Matter 11, 3396 (2015)

    Article  ADS  Google Scholar 

  63. D. Takagi, J. Palacci, A.B. Braunschweig, M.J. Shelley, J. Zhang, Soft Matter 10, 1784 (2014)

    Article  ADS  Google Scholar 

  64. T. Ishikawa, M.P. Simmonds, T.J. Pedley, J. Fluid Mech. 568, 119 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  65. D. Papavassiliou, G.P. Alexander, J. Fluid Mech. 813, 618 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  66. R. Matas Navarro, I. Pagonabarraga, Eur. Phys. J. E 33, 27 (2010)

    Article  Google Scholar 

  67. F. Alarcón, I. Pagonabarraga, J. Mol. Liq. 185, 56 (2013)

    Article  Google Scholar 

  68. J.B. Delfau, J. Molina, M. Sano, EPL 114, 24001 (2016)

    Article  ADS  Google Scholar 

  69. D. Saintillan, M.J. Shelley, Phys. Fluids 20, 123304 (2008)

    Article  ADS  Google Scholar 

  70. E. Lauga, F. Nadal, EPL 116, 64004 (2016)

    Article  ADS  Google Scholar 

  71. T. Bickel, A. Majee, A. Würger, Phys. Rev. E 88, 012301 (2013)

    Article  ADS  Google Scholar 

  72. S. Michelin, E. Lauga, J. Fluid Mech. 747, 572 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  73. Y. Ibrahim, T.B. Liverpool, Eur. Phys. J. ST 225, 1843 (2016)

    Article  Google Scholar 

  74. L. Baraban, M. Tasinkevych, M.N. Popescu, S. Sánchez, S. Dietrich, O.G. Schmidt, Soft Matter 8, 48 (2012)

    Article  ADS  Google Scholar 

  75. J. Palacci, S. Sacanna, A.S. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)

    Article  ADS  Google Scholar 

  76. F. Ginot, I. Theurkauff, F. Detcheverry, C. Ybert, C. Cottin-Bizonne, Nat. Commun. 9, 696 (2018)

    Article  ADS  Google Scholar 

  77. W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 434 (2015)

    Article  ADS  Google Scholar 

  78. A. Mozaffari, N. Sharifi-Mood, J. Koplik, C. Maldarelli, Phys. Fluids 28, 053107 (2016)

    Article  ADS  Google Scholar 

  79. A.T. Brown, I.D. Vladescu, A. Dawson, T. Vissers, J. Schwarz-Linek, J.S. Lintuvuori, W.C.K. Poon, Soft Matter 12, 131 (2016)

    Article  ADS  Google Scholar 

  80. A.M. Leshansky, A.A. Golovin, A. Nir, Phys. Fluids 9, 2818 (1997)

    Article  ADS  Google Scholar 

  81. A. Domínguez, P. Malgaretti, M.N. Popescu, S. Dietrich, Phys. Rev. Lett. 116, 078301 (2016)

    Article  ADS  Google Scholar 

  82. S. Das, A. Garg, A.I. Campbell, J.R. Howse, A. Sen, D. Velegol, R. Golestanian, S.J. Ebbens, Nat. Commun. 6, 8999 (2015)

    Article  ADS  Google Scholar 

  83. J. Simmchen, J. Katuri, W.E. Uspal, M.N. Popescu, M. Tasinkevych, S. Sánchez, Nat. Commun. 7, 10598 (2016)

    Article  ADS  Google Scholar 

  84. W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Phys. Rev. Lett. 117, 048002 (2016)

    Article  ADS  Google Scholar 

  85. M.N. Popescu, W.E. Uspal, S. Dietrich, J. Phys.: Condens. Matter 29, 134001 (2017)

    ADS  Google Scholar 

  86. W.E. Uspal, M.N. Popescu, M. Tasinkevych, S. Dietrich, New J. Phys. 20, 015013 (2018)

    Article  ADS  Google Scholar 

  87. C. Liu, C. Zhou, W. Wang, H.P. Zhang, Phys. Rev. Lett. 117, 198001 (2016)

    Article  ADS  Google Scholar 

  88. M.N. Popescu, S. Dietrich, G. Oshanin, J. Chem. Phys. 130, 194702 (2009)

    Article  ADS  Google Scholar 

  89. J. Palacci, S. Sacanna, A. Abramian, J. Barral, K. Hanson, A.Y. Grosberg, D.J. Pine, P.M. Chaikin, Sci. Adv. 1, e1400214 (2015)

    Article  ADS  Google Scholar 

  90. W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 6613 (2015)

    Article  ADS  Google Scholar 

  91. J. Katuri, W.E. Uspal, J. Simmchen, A. Miguel López, S. Sánchez, Sci. Adv. 4, eaao1755 (2018)

    Article  ADS  Google Scholar 

  92. A.I. Campbell, S.J. Ebbens, Langmuir 29, 14066 (2013)

    Article  Google Scholar 

  93. M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011)

    Article  ADS  Google Scholar 

  94. Y. Ibrahim, T.B. Liverpool, EPL 111, 48008 (2015)

    Article  ADS  Google Scholar 

  95. M.N. Popescu, W.E. Uspal, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 40, 42 (2017)

    Article  Google Scholar 

  96. N. Sharifi-Mood, A. Mozaffari, U.M. Córdova-Figueroa, J. Fluid Mech. 798, 910 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  97. S.Y. Reigh, R. Kapral, Soft Matter 11, 3149 (2015)

    Article  ADS  Google Scholar 

  98. M.N. Popescu, S. Dietrich, M. Tasinkevych, J. Ralston, Eur. Phys. J. E 31, 351 (2010)

    Article  Google Scholar 

  99. J.F. Brady, J. Fluid Mech. 667, 216 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  100. S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1962)

  101. M. Abramowitz, I.R. Stegun (Editors), Handbook of Mathematical Functions (Dover, New York, 1972)

  102. X. Ma, A. Jannasch, U.R. Albrecht, K. Hahn, A. Miguel-López, E. Schäffer, S. Sánchez, Nano Lett. 15, 7043 (2015)

    Article  ADS  Google Scholar 

  103. G.F. Elfring, Phys. Fluids 27, 023101 (2015)

    Article  ADS  Google Scholar 

  104. K. Drescher, R.E. Goldstein, N. Michel, M. Polin, I. Tuval, Phys. Rev. Lett. 105, 168101 (2010)

    Article  ADS  Google Scholar 

  105. Z. Eskandari, unpublished (2016)

  106. A. Brown, W.C.K. Poon, Soft Matter 10, 4016 (2014)

    Article  ADS  Google Scholar 

  107. U.M. Córdova-Figueroa, J.F. Brady, Phys. Rev. Lett. 100, 158303 (2008)

    Article  ADS  Google Scholar 

  108. W.D. Collins, Math. Proc. Cambridge Philos. Soc. 57, 367 (1961)

    Article  ADS  Google Scholar 

  109. I.N. Sneddon, Mixed boundary Value in Potential Theory (North-Holland, Amsterdam, The Netherlands, 1966)

  110. R. Samson, J.M. Deutch, J. Chem. Phys. 68, 285 (1978)

    Article  ADS  Google Scholar 

  111. D. Shoup, G. Lipari, A. Szabo, Biophys. J. 36, 697 (1981)

    Article  Google Scholar 

  112. D. Shoup, A. Szabo, Biophys. J. 40, 33 (1982)

    Article  ADS  Google Scholar 

  113. S.D. Traytak, J. Phys. Chem. 98, 7419 (1994)

    Article  Google Scholar 

  114. S.D. Traytak, Chem. Phys. 192, 1 (1995)

    Article  Google Scholar 

  115. S.D. Traytak, M. Tachiya, J. Chem. Phys. 102, 9240 (1995)

    Article  ADS  Google Scholar 

  116. S.D. Traytak, M. Tachiya, J. Chem. Phys. 102, 2760 (1995)

    Article  ADS  Google Scholar 

  117. S.D. Traytak, W.S. Price, J. Chem. Phys. 127, 184508 (2007)

    Article  ADS  Google Scholar 

  118. P. Malgaretti, M.N. Popescu, S. Dietrich, Soft Matter 14, 1375 (2018)

    Article  ADS  Google Scholar 

  119. S.Y. Reigh, P. Chuphal, S. Thakur, R. Kapral, Soft Matter 14, 6043 (2018)

    Article  ADS  Google Scholar 

  120. A. Varma, T.D. Montenegro-Johnson, S. Michelin, Soft Matter 14, 7155 (2018)

    Article  ADS  Google Scholar 

  121. M. Wagner, M. Ripoll, EPL 119, 66007 (2017)

    Article  ADS  Google Scholar 

  122. A.M. Leshansky, O. Kenneth, O. Gat, J.E. Avron, New J. Phys. 9, 145 (2007)

    Article  ADS  Google Scholar 

  123. M. Theers, E. Westphal, G. Gompper, R.G. Winkler, Soft Matter 12, 7372 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Open Access funding provided by Max Planck Society.

Author information

Authors and Affiliations

  1. Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569, Stuttgart, Germany

    M. N. Popescu, W. E. Uspal, Z. Eskandari & S. Dietrich

  2. IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany

    M. N. Popescu, W. E. Uspal, Z. Eskandari & S. Dietrich

  3. Centro de Física Teórica e Computacional, Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, P-1749-016, Lisboa, Portugal

    M. Tasinkevych

Authors
  1. M. N. Popescu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. W. E. Uspal
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Z. Eskandari
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. M. Tasinkevych
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. S. Dietrich
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to M. N. Popescu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popescu, M.N., Uspal, W.E., Eskandari, Z. et al. Effective squirmer models for self-phoretic chemically active spherical colloids. Eur. Phys. J. E 41, 145 (2018). https://doi.org/10.1140/epje/i2018-11753-1

Download citation

  • Received: 06 April 2018

  • Accepted: 09 November 2018

  • Published: 12 December 2018

  • DOI: https://doi.org/10.1140/epje/i2018-11753-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Topical issue: Flowing Matter, Problems and Applications
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Associated Content

Part of a collection:

Flowing Matter, Problems and Applications

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.