Abstract.
Various aspects of self-motility of chemically active colloids in Newtonian fluids can be captured by simple models for their chemical activity plus a phoretic-slip hydrodynamic boundary condition on their surface. For particles of simple shapes (e.g., spheres) --as employed in many experimental studies-- which move at very low Reynolds numbers in an unbounded fluid, such models of chemically active particles effectively map onto the well studied so-called hydrodynamic squirmers (S. Michelin and E. Lauga, J. Fluid Mech. 747, 572 (2014)). Accordingly, intuitively appealing analogies of “pusher/puller/neutral” squirmers arise naturally. Within the framework of self-diffusiophoresis we illustrate the above-mentioned mapping and the corresponding flows in an unbounded fluid for a number of choices of the activity function (i.e., the spatial distribution and the type of chemical reactions across the surface of the particle). We use the central collision of two active particles as a simple, paradigmatic case for demonstrating that in the presence of other particles or boundaries the behavior of chemically active colloids may be qualitatively different, even in the far field, from the one exhibited by the corresponding “effective squirmer”, obtained from the mapping in an unbounded fluid. This emphasizes that understanding the collective behavior and the dynamics under geometrical confinement of chemically active particles necessarily requires to explicitly account for the dependence of the hydrodynamic interactions on the distribution of chemical species resulting from the activity of the particles.
Graphical abstract

References
R.F. Ismagilov, A. Schwartz, N. Bowden, G.M. Whitesides, Angew. Chem. Int. Ed. 41, 652 (2002)
W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo, Y.Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)
G.A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, Adv. Mater. 17, 3011 (2005)
W.F. Paxton, S. Sundararajan, T.E. Mallouk, A. Sen, Angew. Chem. Int. Ed. 45, 5420 (2006)
W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk, A. Sen, J. Am. Chem. Soc. 128, 14881 (2006)
A.A. Solovev, Y.F. Mei, E.B. Urena, G.S. Huang, O.G. Schmidt, Small 5, 1688 (2009)
T. Mirkovic, N.S. Zacharia, G.D. Scholes, G.A. Ozin, Small 6, 159 (2010)
S. Fournier-Bidoz, A.C. Arsenault, I. Manners, G.A. Ozin, Chem. Commun. 0, 441 (2005)
J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)
G. Volpe, I. Buttinoni, D. Vogt, H.J. Kümmerer, C. Bechinger, Soft Matter 7, 8810 (2011)
S. Ebbens, M.H. Tu, J.R. Howse, R. Golestanian, Phys. Rev. E 85, 020401(R) (2012)
F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013)
I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)
T.C. Lee, M. Alarcón-Correa, C. Miksch, K. Hahn, J.G. Gibbs, P. Fischer, Nano Lett. 14, 2407 (2014)
S. Ebbens, D.A. Gregory, G. Dunderdale, J.R. Howse, Y. Ibrahim, T.B. Liverpool, R. Golestanian, EPL 106, 58003 (2014)
B. ten Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014)
X. Ma, S. Jang, M.N. Popescu, W.E. Uspal, A. Miguel-López, K. Hahn, D.P. Kim, S. Sánchez, ACS Nano 10, 8751 (2016)
S. Herminghaus, C.C. Maas, C. Krüger, S. Thutupalli, L. Goehring, C. Bahr, Soft Matter 10, 7008 (2014)
R. Seemann, J.B. Fleury, C.C. Maas, Eur. Phys. J. ST 225, 2227 (2016)
K. Kroy, D. Chakraborty, F. Cichos, Eur. Phys. J. ST 225, 2207 (2016)
C. Lozano, B. ten Hagen, H. Löwen, C. Bechinger, Nat. Commun. 7, 12828 (2016)
R. Golestanian, T.B. Liverpool, A. Ajdari, Phys. Rev. Lett. 94, 220801 (2005)
R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)
G.R. Rückner, R. Kapral, Phys. Rev. Lett. 98, 150603 (2007)
F. Jülicher, J. Prost, Eur. Phys. J. E 29, 27 (2009)
M.N. Popescu, M. Tasinkevych, S. Dietrich, EPL 95, 28004 (2011)
B. Sabass, U. Seifert, J. Chem. Phys. 136, 064508 (2012)
B. Sabass, U. Seifert, J. Chem. Phys. 136, 214507 (2012)
R. Kapral, J. Chem. Phys. 138, 202901 (2013)
N. Sharifi-Mood, J. Koplik, C. Maldarelli, Phys. Fluids 25, 012001 (2013)
B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011)
S. Michelin, E. Lauga, Eur. Phys. J. E 38, 7 (2015)
J. Hu, A. Wysocki, R.G. Winkler, G. Gompper, Sci. Rep. 5, 9586 (2015)
M.N. Popescu, W.E. Uspal, S. Dietrich, Eur. Phys. J. ST 225, 2189 (2016)
A. Zöttl, H. Stark, J. Phys.: Condens. Matter 28, 253001 (2016)
J. de Graaf, G. Rempfer, C. Holm, IEEE Trans. NanoBiosci. 14, 272 (2015)
G. Oshanin, M.N. Popescu, S. Dietrich, J. Phys. A 50, 134001 (2017)
P.E. Lammert, V.H. Crespi, A. Nourhani, J. Fluid Mech. 802, 294 (2016)
A.T. Brown, W.C.K. Poon, C. Holm, J. de Graaf, Soft Matter 13, 1200 (2017)
E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)
S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)
Y. Hong, D. Velegol, N. Chaturvedi, A. Sen, Phys. Chem. Chem. Phys. 12, 1423 (2010)
J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)
C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)
J.L. Moran, J.D. Posner, Annu. Rev. Fluid Mech. 49, 511 (2016)
B.V. Derjaguin, Y.I. Yalamov, A.I. Storozhilova, J. Colloid Interface Sci. 22, 117 (1966)
J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)
C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (CRC Press, Boca Raton, 2002)
J. Happel, H. Brenner, Low Reynolds number hydrodynamics (Noordhoff Int. Pub., Leyden, The Netherlands, 1973)
M.J. Lighthill, Commun. Pure Appl. Math. 5, 109 (1952)
J.R. Blake, J. Fluid Mech. 46, 199 (1971)
O.S. Pak, E. Lauga, J. Eng. Math. 88, 1 (2014)
E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Biophys. J. 90, 400 (2006)
A.P. Berke, L. Turner, H.C. Berg, E. Lauga, Phys. Rev. Lett. 101, 038102 (2008)
D. Lopez, E. Lauga, Phys. Fluids 26, 071902 (2014)
A.J.T.M. Mathijssen, A. Doostmohammadi, J.M. Yeomans, T.N. Shendruk, J. Fluid Mech. 806, 35 (2016)
R. Matas Navarro, I. Pagonabarraga, J. Non-Newton. Fluid Mech. 165, 946 (2010)
K. Ishimoto, E.A. Gaffney, Phys. Rev. E 88, 062702 (2013)
J. de Graaf, A.J.T.M. Mathijssen, M. Fabritius, H. Menke, C. Holm, T.N. Shendruk, Soft Matter 12, 4704 (2016)
J.S. Lintuvuori, A.T. Brown, K. Stratford, D. Marenduzzo, Soft Matter 12, 7959 (2016)
S. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)
S.E. Spagnolie, G.R. Moreno-Flores, D. Bartolo, E. Lauga, Soft Matter 11, 3396 (2015)
D. Takagi, J. Palacci, A.B. Braunschweig, M.J. Shelley, J. Zhang, Soft Matter 10, 1784 (2014)
T. Ishikawa, M.P. Simmonds, T.J. Pedley, J. Fluid Mech. 568, 119 (2006)
D. Papavassiliou, G.P. Alexander, J. Fluid Mech. 813, 618 (2017)
R. Matas Navarro, I. Pagonabarraga, Eur. Phys. J. E 33, 27 (2010)
F. Alarcón, I. Pagonabarraga, J. Mol. Liq. 185, 56 (2013)
J.B. Delfau, J. Molina, M. Sano, EPL 114, 24001 (2016)
D. Saintillan, M.J. Shelley, Phys. Fluids 20, 123304 (2008)
E. Lauga, F. Nadal, EPL 116, 64004 (2016)
T. Bickel, A. Majee, A. Würger, Phys. Rev. E 88, 012301 (2013)
S. Michelin, E. Lauga, J. Fluid Mech. 747, 572 (2014)
Y. Ibrahim, T.B. Liverpool, Eur. Phys. J. ST 225, 1843 (2016)
L. Baraban, M. Tasinkevych, M.N. Popescu, S. Sánchez, S. Dietrich, O.G. Schmidt, Soft Matter 8, 48 (2012)
J. Palacci, S. Sacanna, A.S. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)
F. Ginot, I. Theurkauff, F. Detcheverry, C. Ybert, C. Cottin-Bizonne, Nat. Commun. 9, 696 (2018)
W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 434 (2015)
A. Mozaffari, N. Sharifi-Mood, J. Koplik, C. Maldarelli, Phys. Fluids 28, 053107 (2016)
A.T. Brown, I.D. Vladescu, A. Dawson, T. Vissers, J. Schwarz-Linek, J.S. Lintuvuori, W.C.K. Poon, Soft Matter 12, 131 (2016)
A.M. Leshansky, A.A. Golovin, A. Nir, Phys. Fluids 9, 2818 (1997)
A. Domínguez, P. Malgaretti, M.N. Popescu, S. Dietrich, Phys. Rev. Lett. 116, 078301 (2016)
S. Das, A. Garg, A.I. Campbell, J.R. Howse, A. Sen, D. Velegol, R. Golestanian, S.J. Ebbens, Nat. Commun. 6, 8999 (2015)
J. Simmchen, J. Katuri, W.E. Uspal, M.N. Popescu, M. Tasinkevych, S. Sánchez, Nat. Commun. 7, 10598 (2016)
W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Phys. Rev. Lett. 117, 048002 (2016)
M.N. Popescu, W.E. Uspal, S. Dietrich, J. Phys.: Condens. Matter 29, 134001 (2017)
W.E. Uspal, M.N. Popescu, M. Tasinkevych, S. Dietrich, New J. Phys. 20, 015013 (2018)
C. Liu, C. Zhou, W. Wang, H.P. Zhang, Phys. Rev. Lett. 117, 198001 (2016)
M.N. Popescu, S. Dietrich, G. Oshanin, J. Chem. Phys. 130, 194702 (2009)
J. Palacci, S. Sacanna, A. Abramian, J. Barral, K. Hanson, A.Y. Grosberg, D.J. Pine, P.M. Chaikin, Sci. Adv. 1, e1400214 (2015)
W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 6613 (2015)
J. Katuri, W.E. Uspal, J. Simmchen, A. Miguel López, S. Sánchez, Sci. Adv. 4, eaao1755 (2018)
A.I. Campbell, S.J. Ebbens, Langmuir 29, 14066 (2013)
M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011)
Y. Ibrahim, T.B. Liverpool, EPL 111, 48008 (2015)
M.N. Popescu, W.E. Uspal, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 40, 42 (2017)
N. Sharifi-Mood, A. Mozaffari, U.M. Córdova-Figueroa, J. Fluid Mech. 798, 910 (2016)
S.Y. Reigh, R. Kapral, Soft Matter 11, 3149 (2015)
M.N. Popescu, S. Dietrich, M. Tasinkevych, J. Ralston, Eur. Phys. J. E 31, 351 (2010)
J.F. Brady, J. Fluid Mech. 667, 216 (2011)
S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1962)
M. Abramowitz, I.R. Stegun (Editors), Handbook of Mathematical Functions (Dover, New York, 1972)
X. Ma, A. Jannasch, U.R. Albrecht, K. Hahn, A. Miguel-López, E. Schäffer, S. Sánchez, Nano Lett. 15, 7043 (2015)
G.F. Elfring, Phys. Fluids 27, 023101 (2015)
K. Drescher, R.E. Goldstein, N. Michel, M. Polin, I. Tuval, Phys. Rev. Lett. 105, 168101 (2010)
Z. Eskandari, unpublished (2016)
A. Brown, W.C.K. Poon, Soft Matter 10, 4016 (2014)
U.M. Córdova-Figueroa, J.F. Brady, Phys. Rev. Lett. 100, 158303 (2008)
W.D. Collins, Math. Proc. Cambridge Philos. Soc. 57, 367 (1961)
I.N. Sneddon, Mixed boundary Value in Potential Theory (North-Holland, Amsterdam, The Netherlands, 1966)
R. Samson, J.M. Deutch, J. Chem. Phys. 68, 285 (1978)
D. Shoup, G. Lipari, A. Szabo, Biophys. J. 36, 697 (1981)
D. Shoup, A. Szabo, Biophys. J. 40, 33 (1982)
S.D. Traytak, J. Phys. Chem. 98, 7419 (1994)
S.D. Traytak, Chem. Phys. 192, 1 (1995)
S.D. Traytak, M. Tachiya, J. Chem. Phys. 102, 9240 (1995)
S.D. Traytak, M. Tachiya, J. Chem. Phys. 102, 2760 (1995)
S.D. Traytak, W.S. Price, J. Chem. Phys. 127, 184508 (2007)
P. Malgaretti, M.N. Popescu, S. Dietrich, Soft Matter 14, 1375 (2018)
S.Y. Reigh, P. Chuphal, S. Thakur, R. Kapral, Soft Matter 14, 6043 (2018)
A. Varma, T.D. Montenegro-Johnson, S. Michelin, Soft Matter 14, 7155 (2018)
M. Wagner, M. Ripoll, EPL 119, 66007 (2017)
A.M. Leshansky, O. Kenneth, O. Gat, J.E. Avron, New J. Phys. 9, 145 (2007)
M. Theers, E. Westphal, G. Gompper, R.G. Winkler, Soft Matter 12, 7372 (2016)
Acknowledgments
Open Access funding provided by Max Planck Society.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Popescu, M.N., Uspal, W.E., Eskandari, Z. et al. Effective squirmer models for self-phoretic chemically active spherical colloids. Eur. Phys. J. E 41, 145 (2018). https://doi.org/10.1140/epje/i2018-11753-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/i2018-11753-1
Keywords
- Topical issue: Flowing Matter, Problems and Applications