Skip to main content
Log in

Nematic liquid crystals of bifunctional patchy spheres

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Anisotropic interactions can bring about the formation, through self-assembly, of semi-flexible chains, which in turn can give rise to nematic phases for suitable temperatures and concentrations. A minimalist model constituted of hard cylinders decorated with attractive sites has been already extensively studied numerically. Simulation data shows that a theoretical approach recently proposed is able to properly capture the physical properties of these self-assembly-driven liquid crystals. Here, we investigated a simpler model constituted of bifunctional Kern-Frenkel hard spheres which does not possess steric anisotropy but which can undergo a istropic-nematic transition as a result of their self-assembly into semi-flexible chains. For this model we compare an accurate numerical estimate of isotropic-nematic phase boundaries with theoretical predictions. The theoretical treatment, originally proposed for cylinder-like particles, has been greatly simplified and its predictions are in good agreement with numerical results. Finally, we also assess a crucial, and not obvious, hypothesis used in the theory, i.e. the ability of the Onsager trial function to properly model particle orientation in the presence of aggregation, that has not been properly checked yet.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Hamley, Introduction to Soft Matter (Wiley & Sons, 2007)

  2. S.C. Glotzer, Science 306, 419 (2004)

    Article  Google Scholar 

  3. G.M. Whitesides, M. Boncheva, Proc. Natl. Acad. Sci. U.S.A. 99, 4769 (2002)

    Article  ADS  Google Scholar 

  4. A. Khan, Curr. Opin. Colloid Interface Sci. 1, 614 (1996)

    Article  Google Scholar 

  5. P. van der Schoot, M. Cates, Langmuir 10, 670 (1994)

    Article  Google Scholar 

  6. D.M. Kuntz, L.M. Walker, Soft Matter 4, 286 (2008)

    Article  ADS  Google Scholar 

  7. R. Mezzenga, J.M. Jung, J. Adamcik, Langmuir 26, 10401 (2010)

    Article  Google Scholar 

  8. C.F. Lee, Phys. Rev. E 80, 031902 (2009)

    Article  ADS  Google Scholar 

  9. A. Ciferri, Liq. Cryst. 34, 693 (2007)

    Article  Google Scholar 

  10. A. Aggeli, M. Bell, L.M. Carrick, C.W.G. Fishwick, R. Harding, P.J. Mawer, S.E. Radford, A.E. Strong, N. Boden, J. Am. Chem. Soc. 125, 9619 (2003)

    Article  Google Scholar 

  11. M. Nakata, G. Zanchetta, B.D. Chapman, C.D. Jones, J.O. Cross, R. Pindak, T. Bellini, N.A. Clark, Science 318, 1276 (2007)

    Article  ADS  Google Scholar 

  12. C. Maffeo, B. Luan, A. Aksimentiev, Nucl. Acids Res. 40, 3812 (2012)

    Article  Google Scholar 

  13. M. Salamonczyk, J. Zhang, G. Portale, C. Zhu, E. Kentzinger, J.T. Gleeson, A. Jakli, C. De Michele, J.K.G. Dhont, S. Sprunt et al., Nat. Commun. 7, 13358 (2016)

    Article  ADS  Google Scholar 

  14. C. Robinson, Tetrahedron 13, 219 (1961)

    Article  Google Scholar 

  15. F. Livolant, A.M. Levelut, J. Doucet, J.P. Benoit, Nature 339, 724 (1989)

    Article  ADS  Google Scholar 

  16. K. Merchant, R.L. Rill, Biophys. J. 73, 3154 (1997)

    Article  Google Scholar 

  17. F. Tombolato, A. Ferrarini, J. Chem. Phys. 122, 054908 (2005)

    Article  ADS  Google Scholar 

  18. P. Mariani, F. Spinozzi, F. Federiconi, H. Amenitsch, L. Spindler, I. Drevensek-Olenik, J. Phys. Chem. B 113, 7934 (2009)

    Article  Google Scholar 

  19. F. Chami, M.R. Wilson, J. Am. Chem. Soc. 132, 7794 (2010)

    Article  Google Scholar 

  20. J. Lydon, Liq. Cryst. 38, 1663 (2011)

    Article  Google Scholar 

  21. P.K. Maiti, Y. Lansac, M.A. Glaser, N.A. Clark, Liq. Cryst. 29, 619 (2002)

    Article  Google Scholar 

  22. R.G. Edwards, J. Henderson, R.L. Pinning, Mol. Phys. 86, 567 (1995)

    Article  ADS  Google Scholar 

  23. J.R. Henderson, J. Chem. Phys. 113, 5965 (2000)

    Article  ADS  Google Scholar 

  24. K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, E. Kumacheva, Science 329, 197 (2010)

    Article  ADS  Google Scholar 

  25. H.S. Park, S.W. Kang, L. Tortora, Y. Nastishin, D. Finotello, S. Kumar, O.D. Lavrentovich, J. Phys. Chem. B 112, 16307 (2008)

    Article  Google Scholar 

  26. N.B. Wilding, J. Phys.: Condens. Matter 9, 585 (1996)

    ADS  Google Scholar 

  27. J. Herzfeld, Acc. Chem. Res. 29, 31 (1996)

    Article  Google Scholar 

  28. X. Lü, J.T. Kindt, J. Chem. Phys. 120, 10328 (2004)

    Article  Google Scholar 

  29. X. Lü, J. Kindt, J. Chem. Phys. 125, 054909 (2006)

    Article  ADS  Google Scholar 

  30. T. Kuriabova, M. Betterton, M. Glaser, J. Mater. Chem. 20, 10366 (2010)

    Article  Google Scholar 

  31. C. De Michele, T. Bellini, F. Sciortino, Macromolecules 45, 1090 (2012)

    Article  ADS  Google Scholar 

  32. M.M.C. Tortora, J.P.K. Doye, Mol. Phys. 116, 2773 (2018)

    Article  ADS  Google Scholar 

  33. K.T. Nguyen, F. Sciortino, C. De Michele, Langmuir 30, 4814 (2014)

    Article  Google Scholar 

  34. K.T. Nguyen, A. Battisti, D. Ancora, F. Sciortino, C. De Michele, Soft Matter 11, 2934 (2015)

    Article  ADS  Google Scholar 

  35. N. Kern, D. Frenkel, J. Chem. Phys. 118, 9882 (2003)

    Article  ADS  Google Scholar 

  36. M.S. Wertheim, J. Stat. Phys. 35, 19 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  37. M.S. Wertheim, J. Stat. Phys. 35, 35 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  38. M.S. Wertheim, J. Stat. Phys. 42, 459 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  39. M.S. Wertheim, J. Chem. Phys. 87, 7323 (1987)

    Article  ADS  Google Scholar 

  40. F. Sciortino, E. Bianchi, J.F. Douglas, P. Tartaglia, J. Chem. Phys. 126, 194903 (2007)

    Article  ADS  Google Scholar 

  41. E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli, F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006)

    Article  ADS  Google Scholar 

  42. F. Sciortino, J. Douglas, C. De Michele, J. Phys.: Condens. Matter 20, 155101 (2008)

    ADS  Google Scholar 

  43. C. De Michele, G. Zanchetta, T. Bellini, E. Frezza, A. Ferrarini, ACS Macro Lett. 5, 208 (2016)

    Article  Google Scholar 

  44. E. Romani, A. Ferrarini, C. De Michele, Macromolecules 51, 5409 (2018)

    Article  ADS  Google Scholar 

  45. D.C. Williamson, G. Jackson, J. Chem. Phys. 108, 10294 (1998)

    Article  ADS  Google Scholar 

  46. R.M. Choueiri, E. Galati, H. Thérien-Aubin, A. Klinkova, E.M. Larin, A. Querejeta-Fernández, L. Han, H.L. Xin, O. Gang, E.B. Zhulina et al., Nature 538, 79 (2016)

    Article  ADS  Google Scholar 

  47. S. Ravaine, E. Duguet, Curr. Opin. Colloid Interface Sci. 30, 45 (2017)

    Article  Google Scholar 

  48. G.R. Yi, D.J. Pine, S. Sacanna, J. Phys.: Condens. Matter 25, 193101 (2013)

    ADS  Google Scholar 

  49. É. Duguet, C. Hubert, C. Chomette, A. Perro, S. Ravaine, C. R. Chim. 19, 173 (2016)

    Article  Google Scholar 

  50. H. Bao, T. Bihr, A.S. Smith, R.N. Klupp Taylor, Nanoscale 6, 3954 (2014)

    Article  ADS  Google Scholar 

  51. A.A. Shah, B. Schultz, K.L. Kohlstedt, S.C. Glotzer, M.J. Solomon, Langmuir 29, 4688 (2013)

    Article  Google Scholar 

  52. C.M. Rachelle, E. Galati, A. Klinkova, H. Therien-Aubin, E. Kumacheva, Faraday Discuss. 191, 189 (2016)

    Article  ADS  Google Scholar 

  53. Y. Zhao, R. Berger, K. Landfester, D. Crespy, Polym. Chem. 5, 365 (2014)

    Article  Google Scholar 

  54. C. Bae, H. Kim, J.M. Montero Moreno, G.R. Yi, H. Shin, Sci. Rep. 5, 9339 (2015)

    Article  ADS  Google Scholar 

  55. C. De Michele, L. Rovigatti, T. Bellini, F. Sciortino, Soft Matter 8, 8388 (2012)

    Article  ADS  Google Scholar 

  56. L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949)

    Article  ADS  Google Scholar 

  57. T. Odijk, Macromolecules 19, 2313 (1986)

    Article  ADS  Google Scholar 

  58. G.J. Vroege, H.N.W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992)

    Article  ADS  Google Scholar 

  59. J.R. Henderson, Phys. Rev. Lett. 77, 2316 (1996)

    Article  ADS  Google Scholar 

  60. J.R. Henderson, Phys. Rev. E 55, 5731 (1997)

    Article  ADS  Google Scholar 

  61. C. Vega, E. Sanz, J.L.F. Abascal, E.G. Noya, J. Phys.: Condens. Matter 20, 153101 (2008)

    ADS  Google Scholar 

  62. D.A. Kofke, J. Chem. Phys. 98, 4149 (1993)

    Article  ADS  Google Scholar 

  63. P. Tian, D. Bedrov, G.D. Smith, M. Glaser, J. Chem. Phys. 115, 9055 (2001)

    Article  ADS  Google Scholar 

  64. P. Virnau, M. Muller, J. Chem. Phys. 120, 10925 (2004)

    Article  ADS  Google Scholar 

  65. R.L.C. Vink, T. Schilling, Phys. Rev. E 71, 051716 (2005)

    Article  ADS  Google Scholar 

  66. J.D. Parsons, Phys. Rev. A 19, 1225 (1979)

    Article  ADS  Google Scholar 

  67. S. Lee, J. Chem. Phys. 87, 4972 (1987)

    Article  ADS  Google Scholar 

  68. S. Varga, I. Szalai, Mol. Phys. 98, 693 (2000)

    Article  ADS  Google Scholar 

  69. D.A. McQuarrie, Statistical Mechanics (University Science Books, Sausalito, CA, 2000)

  70. D.C. Williamson, G. Jackson, Mol. Phys. 86, 819 (1995)

    Article  ADS  Google Scholar 

  71. S.C. McGrother, D.C. Williamson, G. Jackson, J. Chem. Phys. 104, 6755 (1996)

    Article  ADS  Google Scholar 

  72. D. Frenkel, B.M. Mulder, J.P. McTague, Phys. Rev. Lett. 52, 287 (1984)

    Article  ADS  Google Scholar 

  73. M. Allen, D. Frenkel, J. Talbot, Comput. Phys. Rep. 9, 301 (1989)

    Article  ADS  Google Scholar 

  74. M.P. Allen, G. Evans, D. Frenkel, B.M. Mulder, Adv. Chem. Phys. 86, 1 (1993)

    Google Scholar 

  75. S. Whitelam, Phys. Rev. Lett. 117, 228003 (2016)

    Article  ADS  Google Scholar 

  76. F. Smallenburg, F. Sciortino, Nat. Phys. 9, 554 (2013)

    Article  Google Scholar 

  77. F. Romano, F. Sciortino, Nat. Commun. 3, 975 (2012)

    Article  ADS  Google Scholar 

  78. C.L. Phillips, E. Jankowski, B.J. Krishnatreya, K.V. Edmond, S. Sacanna, D.G. Grier, D.J. Pine, S.C. Glotzer, Soft Matter 10, 7468 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano De Michele.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, K.T., De Michele, C. Nematic liquid crystals of bifunctional patchy spheres. Eur. Phys. J. E 41, 141 (2018). https://doi.org/10.1140/epje/i2018-11750-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11750-4

Keywords

Navigation