Skip to main content

Advertisement

SpringerLink
  1. Home
  2. The European Physical Journal E
  3. Article
Rough-wall turbulent Taylor-Couette flow: The effect of the rib height
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Reynolds number effects in rib-roughened turbulent channel flow

01 December 2019

Karthikeyan Jagadeesan & Vagesh D. Narasimhamurthy

Experimental investigation on the degradation of turbulent friction drag reduction over semi-circular riblets

16 December 2022

Wenfeng Li, Shenghong Peng, … Wolfgang Schröder

Direct Numerical Simulations of Turbulent Flow Over Various Riblet Shapes in Minimal-Span Channels

20 November 2020

S. Endrikat, D. Modesti, … D. Chung

Analysis of turbulent flow in a channel roughened by two-dimensional ribs: effect of first rib width

01 January 2020

B. Omari, A. Mataoui & A. Salem

Numerical analysis of turbulence characteristics in a flat-plate flow with riblets control

26 August 2022

Yang Zhang, Zhixian Ye, … Yao Zheng

DNS of plane Couette flow with surface roughness

01 December 2019

Shashi Kumar Javanappa & Vagesh D. Narasimhamurthy

Turbulent channel flows over porous rib-roughed walls

02 April 2022

Yuki Okazaki, Yumeto Takase, … Kazuhiko Suga

The Wall-Jet Region of a Turbulent Jet Impinging on Smooth and Rough Plates

23 November 2022

Francesco Secchi, Davide Gatti & Bettina Frohnapfel

Flow field investigation behind a trapezoidal rib and the effect of the synthetic jet

25 October 2019

Sushanta Dutta & Abhishek Malik

Download PDF
  • Regular Article
  • Open Access
  • Published: 22 October 2018

Rough-wall turbulent Taylor-Couette flow: The effect of the rib height

  • Ruben A. Verschoof1,
  • Xiaojue Zhu1,
  • Dennis Bakhuis1,
  • Sander G. Huisman1,
  • Roberto Verzicco2,1,
  • Chao Sun3,1 &
  • …
  • Detlef Lohse1,3,4 

The European Physical Journal E volume 41, Article number: 125 (2018) Cite this article

  • 493 Accesses

  • 3 Citations

  • Metrics details

Abstract.

In this study, we combine experiments and direct numerical simulations to investigate the effects of the height of transverse ribs at the walls on both global and local flow properties in turbulent Taylor-Couette flow. We create rib roughness by attaching up to 6 axial obstacles to the surfaces of the cylinders over an extensive range of rib heights, up to blockages of 25% of the gap width. In the asymptotic ultimate regime, where the transport is independent of viscosity, we emperically find that the prefactor of the \(Nu_{\omega} \propto Ta^{1/2}\) scaling (corresponding to the drag coefficient \(C_{f}(Re)\) being constant) scales with the number of ribs \( N_r\) and by the rib height \(h^{1.71}\). The physical mechanism behind this is that the dominant contribution to the torque originates from the pressure forces acting on the rib which scale with the rib height. The measured scaling relation of \( N_{r} h^{1.71}\) is slightly smaller than the expected \( N_{r} h^{2}\) scaling, presumably because the ribs cannot be regarded as completely isolated but interact. In the counter-rotating regime with smooth walls, the momentum transport is increased by turbulent Taylor vortices. We find that also in the presence of transverse ribs these vortices persist. In the counter-rotating regime, even for large roughness heights, the momentum transport is enhanced by these vortices.

Graphical abstract

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. M.P. Schultz, Biofouling 23, 331 (2007)

    Article  Google Scholar 

  2. H. Ren, W. Yanhua, Phys. Fluids 23, 045102 (2011)

    Article  ADS  Google Scholar 

  3. I. Marusic, B.J. McKeon, P.A. Monkewitz, H.M. Nagib, A.J. Smits, K.R. Sreenivasan, Phys. Fluids 22, 065103 (2010)

    Article  ADS  Google Scholar 

  4. K.A. Flack, M.P. Schultz, Phys. Fluids 26, 101305 (2014)

    Article  ADS  Google Scholar 

  5. J. Nikuradse, Strömungsgesetze in rauhen Rohren, Forschungsheft 361 (VDI-Verlag, 1933)

  6. C. Colebrook, J. Inst. Chem. Eng. 11, 113 (1939)

    Google Scholar 

  7. L.F. Moody, Trans. ASME 66, 671 (1944)

    Google Scholar 

  8. J. Jiménez, Annu. Rev. Fluid Mech. 36, 173 (2004)

    Article  ADS  Google Scholar 

  9. M.A. Shockling, J.J. Allen, A.J. Smits, J. Fluid Mech. 564, 267 (2006)

    Article  ADS  Google Scholar 

  10. M.P. Schultz, K.A. Flack, J. Fluid Mech. 580, 381 (2007)

    Article  ADS  Google Scholar 

  11. A. Busse, M. Lützner, N.D. Sandham, Comput. Fluids 116, 129 (2015)

    Article  Google Scholar 

  12. L. Chan, M. MacDonald, D. Chung, N. Hutchins, A. Ooi, J. Fluid Mech. 771, 743 (2015)

    Article  ADS  Google Scholar 

  13. M. MacDonald, L. Chan, D. Chung, N. Hutchins, A. Ooi, J. Fluid Mech. 804, 130 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Thakkar, A. Busse, N.D. Sandham, J. Fluid Mech. 837, R1 (2017)

    Article  Google Scholar 

  15. K.A. Flack, J. Fluid Mech. 842, 1 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. X. Zhu, R.A. Verschoof, D. Bakhuis, S.G. Huisman, R. Verzicco, C. Sun, D. Lohse, Nat. Phys. 14, 417 (2018)

    Article  Google Scholar 

  17. F.H. Busse, Physics 5, 4 (2012)

    Article  Google Scholar 

  18. M.A. Fardin, C. Perge, N. Taberlet, Soft Matter 10, 3523 (2014)

    Article  ADS  Google Scholar 

  19. S. Grossmann, D. Lohse, C. Sun, Annu. Rev. Fluid Mech. 48, 53 (2016)

    Article  ADS  Google Scholar 

  20. S. Grossmann, D. Lohse, Phys. Fluids 23, 045108 (2011)

    Article  ADS  Google Scholar 

  21. R.H. Kraichnan, Phys. Fluids 5, 1374 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  22. D.P.M. van Gils, S.G. Huisman, G.W. Bruggert, C. Sun, D. Lohse, Phys. Rev. Lett. 106, 024502 (2011)

    Article  ADS  Google Scholar 

  23. X. He, D. Funfschilling, E. Bodenschatz, G. Ahlers, New J. Phys. 14, 063030 (2012)

    Article  ADS  Google Scholar 

  24. X. He, D. Funfschilling, H. Nobach, E. Bodenschatz, G. Ahlers, Phys. Rev. Lett. 108, 024502 (2012)

    Article  ADS  Google Scholar 

  25. R. Ostilla-Mónico, E.P. van der Poel, R. Verzicco, S. Grossmann, D. Lohse, J. Fluid Mech. 761, 1 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  26. O. Cadot, Y. Couder, A. Daerr, S. Douady, A. Tsinober, Phys. Rev. E 56, 427 (1997)

    Article  ADS  Google Scholar 

  27. T.H. van den Berg, C. Doering, D. Lohse, D. Lathrop, Phys. Rev. E 68, 036307 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  28. C. Doering, P. Constantin, Phys. Rev. E 53, 5957 (1996)

    Article  ADS  Google Scholar 

  29. R. Nicodemus, S. Grossmann, M. Holthaus, Phys. Rev. Lett. 79, 4170 (1997)

    Article  ADS  Google Scholar 

  30. R.L. Webb, E.R.G. Eckert, R.J. Goldstein, Int. J. Heat Mass Transfer 14, 601 (1971)

    Article  Google Scholar 

  31. X. Zhu, R.J.A.M. Stevens, R. Verzicco, D. Lohse, Phys. Rev. Lett. 119, 154501 (2017)

    Article  ADS  Google Scholar 

  32. B. Eckhardt, S. Grossmann, D. Lohse, J. Fluid Mech. 581, 221 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. D.P.M. van Gils, G.W. Bruggert, D.P. Lathrop, C. Sun, D. Lohse, Rev. Sci. Instrum. 82, 025105 (2011)

    Article  ADS  Google Scholar 

  34. D.P.M. van Gils, S.G. Huisman, S. Grossmann, C. Sun, D. Lohse, J. Fluid Mech. 706, 118 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Verzicco, P. Orlandi, J. Comput. Phys. 123, 402 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  36. E.P. van der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, Comput. Fluids 116, 10 (2015)

    Article  MathSciNet  Google Scholar 

  37. E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, J. Comput. Phys. 161, 35 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  38. J. Yang, E. Balaras, J. Comput. Phys. 215, 12 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  39. R. Ostilla-Mónico, E.P. van der Poel, R. Verzicco, S. Grossmann, D. Lohse, Phys. Fluids 26, 015114 (2014)

    Article  ADS  Google Scholar 

  40. R. Ostilla-Mónico, R. Verzicco, D. Lohse, Phys. Fluids 27, 025110 (2015)

    Article  ADS  Google Scholar 

  41. X. Zhu, R. Verzicco, D. Lohse, J. Fluid Mech. 812, 279 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Avila, Phys. Rev. Lett. 108, 124501 (2012)

    Article  ADS  Google Scholar 

  43. H.J. Brauckmann, B. Eckhardt, J. Fluid Mech. 718, 398 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  44. S. Maretzke, B. Hof, M. Avila, J. Fluid Mech. 742, 254 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  45. M.S. Paoletti, D.P. Lathrop, Phys. Rev. Lett. 106, 024501 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Physics of Fluids, Max Planck Institute for Complex Fluid Dynamics, MESA+ institute and J. M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands

    Ruben A. Verschoof, Xiaojue Zhu, Dennis Bakhuis, Sander G. Huisman, Roberto Verzicco, Chao Sun & Detlef Lohse

  2. Dipartimento di Ingegneria Industriale, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133, Roma, Italy

    Roberto Verzicco

  3. Center for Combustion Energy and Department of Energy and Power Engineering, Tsinghua University, 100084, Beijing, China

    Chao Sun & Detlef Lohse

  4. Max Planck Institute for Dynamics and Self-Organization, 37077, Göttingen, Germany

    Detlef Lohse

Authors
  1. Ruben A. Verschoof
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Xiaojue Zhu
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Dennis Bakhuis
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Sander G. Huisman
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Roberto Verzicco
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Chao Sun
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Detlef Lohse
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ruben A. Verschoof.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verschoof, R.A., Zhu, X., Bakhuis, D. et al. Rough-wall turbulent Taylor-Couette flow: The effect of the rib height. Eur. Phys. J. E 41, 125 (2018). https://doi.org/10.1140/epje/i2018-11736-2

Download citation

  • Received: 02 May 2018

  • Accepted: 26 September 2018

  • Published: 22 October 2018

  • DOI: https://doi.org/10.1140/epje/i2018-11736-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Flowing matter: Nonlinear Physics
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.