Abstract.
In this study, we combine experiments and direct numerical simulations to investigate the effects of the height of transverse ribs at the walls on both global and local flow properties in turbulent Taylor-Couette flow. We create rib roughness by attaching up to 6 axial obstacles to the surfaces of the cylinders over an extensive range of rib heights, up to blockages of 25% of the gap width. In the asymptotic ultimate regime, where the transport is independent of viscosity, we emperically find that the prefactor of the \(Nu_{\omega} \propto Ta^{1/2}\) scaling (corresponding to the drag coefficient \(C_{f}(Re)\) being constant) scales with the number of ribs \( N_r\) and by the rib height \(h^{1.71}\). The physical mechanism behind this is that the dominant contribution to the torque originates from the pressure forces acting on the rib which scale with the rib height. The measured scaling relation of \( N_{r} h^{1.71}\) is slightly smaller than the expected \( N_{r} h^{2}\) scaling, presumably because the ribs cannot be regarded as completely isolated but interact. In the counter-rotating regime with smooth walls, the momentum transport is increased by turbulent Taylor vortices. We find that also in the presence of transverse ribs these vortices persist. In the counter-rotating regime, even for large roughness heights, the momentum transport is enhanced by these vortices.
Graphical abstract

References
M.P. Schultz, Biofouling 23, 331 (2007)
H. Ren, W. Yanhua, Phys. Fluids 23, 045102 (2011)
I. Marusic, B.J. McKeon, P.A. Monkewitz, H.M. Nagib, A.J. Smits, K.R. Sreenivasan, Phys. Fluids 22, 065103 (2010)
K.A. Flack, M.P. Schultz, Phys. Fluids 26, 101305 (2014)
J. Nikuradse, Strömungsgesetze in rauhen Rohren, Forschungsheft 361 (VDI-Verlag, 1933)
C. Colebrook, J. Inst. Chem. Eng. 11, 113 (1939)
L.F. Moody, Trans. ASME 66, 671 (1944)
J. Jiménez, Annu. Rev. Fluid Mech. 36, 173 (2004)
M.A. Shockling, J.J. Allen, A.J. Smits, J. Fluid Mech. 564, 267 (2006)
M.P. Schultz, K.A. Flack, J. Fluid Mech. 580, 381 (2007)
A. Busse, M. Lützner, N.D. Sandham, Comput. Fluids 116, 129 (2015)
L. Chan, M. MacDonald, D. Chung, N. Hutchins, A. Ooi, J. Fluid Mech. 771, 743 (2015)
M. MacDonald, L. Chan, D. Chung, N. Hutchins, A. Ooi, J. Fluid Mech. 804, 130 (2016)
M. Thakkar, A. Busse, N.D. Sandham, J. Fluid Mech. 837, R1 (2017)
K.A. Flack, J. Fluid Mech. 842, 1 (2018)
X. Zhu, R.A. Verschoof, D. Bakhuis, S.G. Huisman, R. Verzicco, C. Sun, D. Lohse, Nat. Phys. 14, 417 (2018)
F.H. Busse, Physics 5, 4 (2012)
M.A. Fardin, C. Perge, N. Taberlet, Soft Matter 10, 3523 (2014)
S. Grossmann, D. Lohse, C. Sun, Annu. Rev. Fluid Mech. 48, 53 (2016)
S. Grossmann, D. Lohse, Phys. Fluids 23, 045108 (2011)
R.H. Kraichnan, Phys. Fluids 5, 1374 (1962)
D.P.M. van Gils, S.G. Huisman, G.W. Bruggert, C. Sun, D. Lohse, Phys. Rev. Lett. 106, 024502 (2011)
X. He, D. Funfschilling, E. Bodenschatz, G. Ahlers, New J. Phys. 14, 063030 (2012)
X. He, D. Funfschilling, H. Nobach, E. Bodenschatz, G. Ahlers, Phys. Rev. Lett. 108, 024502 (2012)
R. Ostilla-Mónico, E.P. van der Poel, R. Verzicco, S. Grossmann, D. Lohse, J. Fluid Mech. 761, 1 (2014)
O. Cadot, Y. Couder, A. Daerr, S. Douady, A. Tsinober, Phys. Rev. E 56, 427 (1997)
T.H. van den Berg, C. Doering, D. Lohse, D. Lathrop, Phys. Rev. E 68, 036307 (2003)
C. Doering, P. Constantin, Phys. Rev. E 53, 5957 (1996)
R. Nicodemus, S. Grossmann, M. Holthaus, Phys. Rev. Lett. 79, 4170 (1997)
R.L. Webb, E.R.G. Eckert, R.J. Goldstein, Int. J. Heat Mass Transfer 14, 601 (1971)
X. Zhu, R.J.A.M. Stevens, R. Verzicco, D. Lohse, Phys. Rev. Lett. 119, 154501 (2017)
B. Eckhardt, S. Grossmann, D. Lohse, J. Fluid Mech. 581, 221 (2007)
D.P.M. van Gils, G.W. Bruggert, D.P. Lathrop, C. Sun, D. Lohse, Rev. Sci. Instrum. 82, 025105 (2011)
D.P.M. van Gils, S.G. Huisman, S. Grossmann, C. Sun, D. Lohse, J. Fluid Mech. 706, 118 (2012)
R. Verzicco, P. Orlandi, J. Comput. Phys. 123, 402 (1996)
E.P. van der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, Comput. Fluids 116, 10 (2015)
E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, J. Comput. Phys. 161, 35 (2000)
J. Yang, E. Balaras, J. Comput. Phys. 215, 12 (2006)
R. Ostilla-Mónico, E.P. van der Poel, R. Verzicco, S. Grossmann, D. Lohse, Phys. Fluids 26, 015114 (2014)
R. Ostilla-Mónico, R. Verzicco, D. Lohse, Phys. Fluids 27, 025110 (2015)
X. Zhu, R. Verzicco, D. Lohse, J. Fluid Mech. 812, 279 (2017)
M. Avila, Phys. Rev. Lett. 108, 124501 (2012)
H.J. Brauckmann, B. Eckhardt, J. Fluid Mech. 718, 398 (2013)
S. Maretzke, B. Hof, M. Avila, J. Fluid Mech. 742, 254 (2014)
M.S. Paoletti, D.P. Lathrop, Phys. Rev. Lett. 106, 024501 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Verschoof, R.A., Zhu, X., Bakhuis, D. et al. Rough-wall turbulent Taylor-Couette flow: The effect of the rib height. Eur. Phys. J. E 41, 125 (2018). https://doi.org/10.1140/epje/i2018-11736-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/i2018-11736-2
Keywords
- Flowing matter: Nonlinear Physics