Skip to main content
Log in

Validation study of using the free volume approximation to confined thermotropic and lyotropic liquid-crystalline fluids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We examined the accuracy of the free volume approximation (FVA) to calculate the isotropic-nematic (IN) transition properties of thermotropic and lyotropic rods between two parallel hard walls. This approximation has been proposed to ease the calculation of the confined systems. It approximates the free energy of the confined particles with a bulk free energy. It predicts a special point for these two types of liquid crystals where the first-order IN transition changes to the second one by decreasing either the temperature, the density or the pore width. This prediction is in contradiction (in spite of some qualitative agreement) with those of the other publications where the authors note that the discontinuous transition terminates at the critical point when the walls are completely impenetrable.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.C. Bawden, N.W. Pirie, J.D. Bernal, I. Fankuchen, Nature (London) 138, 1051 (1936)

    Article  ADS  Google Scholar 

  2. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Clarendon Press, Oxford, 1993)

  3. S. Chandrasekhar, Liquid Crystals, 2nd edition (Cambridge University Press, 1993)

  4. F.M. van der Kooij, K. Kassapidou, H.N. Lekkerkerker, Nature 406, 868 (2000)

    Article  ADS  Google Scholar 

  5. Y. Li, J.J.Y. Suen, E. Prince, E.M. Larin, A. Klinkova, H. Téhrien-Aubin, S. Zhu, B. Yang, A.S. Helmy, O.D. Lavrentovich, E. Kumacheva, Nat. Commun. 7, 12520 (2016)

    Article  ADS  Google Scholar 

  6. S. Varga, A. Galindo, G. Jackson, J. Chem. Phys. 117, 10412 (2002)

    Article  ADS  Google Scholar 

  7. M.R. Khadilkar, F.A. Escobedo, Soft Matter 12, 1506 (2016)

    Article  ADS  Google Scholar 

  8. W. Song, I.A. Kinloch, A.H. Windle, Science 302, 1363 (2003)

    Article  Google Scholar 

  9. I. Drevenšek-Olenik, in Liquid Crystals with Nano and Microparticles (World Scientific, 2017) pp. 537--569

  10. H.P. Xin, F. Liu, G.J. Ren, H.L. Zhao, J.Q. Yao, Opt. Commun. 389, 92 (2017)

    Article  ADS  Google Scholar 

  11. S. Kumar, Chemistry of Discotic Liquid Crystals: From Monomers to Polymers (CRC Press, 2016)

  12. I. Shiyanovskaya, K.D. Singer, R.J. Twieg, L. Sukhomlinova, V. Gettwert, Phys. Rev. E 65, 041715 (2002)

    Article  ADS  Google Scholar 

  13. B.R. Kaafarani, Chem. Mater. 23, 378 (2010)

    Article  Google Scholar 

  14. R.J. Carlton, J.T. Hunter, D.S. Miller, R. Abbasi, P.C. Mushenheim, L.N. Tan, N. Abbott, Liq. Cryst. Rev. 1, 29 (2013)

    Article  Google Scholar 

  15. J.C. Everts, M.T.J.J.M. Punter, S. Samin, P.P.A.M. van der Schoot, R. van Roij, J. Chem. Phys. 144, 194901 (2016)

    Article  ADS  Google Scholar 

  16. S.D. Peroukidis, A.G. Vanakaras, Soft Matter 9, 7419 (2013)

    Article  ADS  Google Scholar 

  17. A. Kuijk, T. Troppenz, L. Filion, A. Imhof, R. Van Roij, M. Dijkstra, A. Van Blaaderen, Soft Matter 10, 6249 (2014)

    Article  ADS  Google Scholar 

  18. K.R. Purdy, S. Varga, A. Galindo, G. Jackson, S. Fraden, Phys. Rev. Lett. 94, 057801 (2005)

    Article  ADS  Google Scholar 

  19. M.A. Bates, G.R. Luckhurst, J. Chem. Phys. 110, 7087 (1999)

    Article  ADS  Google Scholar 

  20. S. Dussi, M. Dijkstra, Nat. Commun. 7, 11175 (2016)

    Article  ADS  Google Scholar 

  21. J.A.C. Veerman, D. Frenkel, Phys. Rev. A 45, 5632 (1992)

    Article  ADS  Google Scholar 

  22. P.A. Santoro, A.R. Sampaio, H.L.F. da Luz, A.J. Palangana, Phys. Lett. A 353, 512 (2006)

    Article  ADS  Google Scholar 

  23. G.P. Souza, D.A. Oliveira, D.D. Luders, N.M. Kimura, M. Simões, A.J. Palangana, J. Mol. Liq. 156, 184 (2010)

    Article  Google Scholar 

  24. D.A. Oliveira, D.D. Luders, G.P. Souza, N.M. Kimura, A.J. Palangana, Cryst. Res. Technol. 44, 1255 (2009)

    Article  Google Scholar 

  25. R. van Roij, M. Dijkstra, R. Evans, J. Chem. Phys. 113, 7689 (2000)

    Article  ADS  Google Scholar 

  26. R. van Roij, M. Dijkstra, R. Evans, Europhys. Lett. 49, 350 (2000)

    Article  ADS  Google Scholar 

  27. R. Aliabadi, M. Moradi, S. Varga, Phys. Rev. E 92, 032503 (2015)

    Article  ADS  Google Scholar 

  28. M. Moradi, B.B. Ghotbabadi, R. Aliabadi, Int. J. Mod. Phys. C 28, 1750068 (2017)

    Article  ADS  Google Scholar 

  29. R. Aliabadi, P. Gurin, E. Velasco, S. Varga, Phys. Rev. E 97, 012703 (2018)

    Article  ADS  Google Scholar 

  30. J.H. Ahn, H.S. Kim, K.J. Lee, S. Jeon, S.J. Kang, Y. Sun, R.G. Nuzzo, J.A. Rogers, Science 314, 1754 (2006)

    Article  ADS  Google Scholar 

  31. D. de las Heras, Y. Martínez-Ratón, E. Velasco, Phys. Chem. Chem. Phys. 12, 10831 (2010)

    Article  Google Scholar 

  32. K. Okano, Japanese J. Appl. Phys. 22, L343 (1983)

    Article  ADS  Google Scholar 

  33. M. Ohgawara, T. Uchida, Japanese J. Appl. Phys. 20, L75 (1981)

    Article  ADS  Google Scholar 

  34. A. Poniewierski, Phys. Rev. E 47, 3396 (1993)

    Article  ADS  Google Scholar 

  35. R. Roth, R.H.H.G. van Roij, D. Andrienko, K.R. Mecke, S. Dietrich, Phys. Rev. Lett. 89, 088301 (2002)

    Article  ADS  Google Scholar 

  36. Y. Mao, M.E. Cates, H.N.W. Lekkerkerker, Physica A: Stat. Mech. Appl. 222, 10 (1995)

    Article  ADS  Google Scholar 

  37. A. Malijevsky, S. Varga, J. Phys.: Condens. Matter 22, 175002 (2010)

    ADS  Google Scholar 

  38. P.I.C. Teixeira, T.J. Sluckin, J. Chem. Phys. 97, 1498 (1992)

    Article  ADS  Google Scholar 

  39. M. Moradi, R.J. Wheatley, A. Avazpour, Phys. Rev. E 72, 061706 (2005)

    Article  ADS  Google Scholar 

  40. D. de las Heras, E. Velasco, L. Mederos, Phys. Rev. E 74, 011709 (2006)

    Article  ADS  Google Scholar 

  41. P. Sheng, Phys. Rev. Lett. 37, 1059 (1976)

    Article  ADS  Google Scholar 

  42. P. Sheng, Phys. Rev. A 26, 1610 (1982)

    Article  ADS  Google Scholar 

  43. A. Poniewierski, R. Holyst, Phys. Rev. Lett. 61, 2461 (1988)

    Article  ADS  Google Scholar 

  44. Z. Pawlowska, G.F. Kventsel, T.J. Sluckin, Phys. Rev. A 36, 992 (1987)

    Article  ADS  Google Scholar 

  45. A. Poniewierski, T.J. Sluckin, Liq. Cryst. 2, 281 (1987)

    Article  Google Scholar 

  46. M.M. Telo da Gama, P. Tarazona, M.P. Allen, R. Evans, Mol. Phys. 71, 801 (1990)

    Article  ADS  Google Scholar 

  47. A. Matsuyama, Phase Separations in Suspensions of Rods between Parallel Walls, https://doi.org/www.researchgate.net (unpublished)

  48. L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949)

    Article  ADS  Google Scholar 

  49. A. Matsuyama, J. Chem. Phys. 132, 214902 (2010)

    Article  ADS  Google Scholar 

  50. A. Matsuyama, T. Ueda, J. Chem. Phys. 136, 224904 (2012)

    Article  ADS  Google Scholar 

  51. S. Shri, Liquid Crystals: Fundamentals (World Scientific, 2002)

  52. A. Matsuyama, T. Kato, Eur. Phys. J. E 6, 15 (2001)

    Article  Google Scholar 

  53. K. Kočevar, A. Borštnik, I. Muševič, S. Zumer, Phys. Rev. Lett. 86, 5914 (2001)

    Article  ADS  Google Scholar 

  54. G.J. Vroege, H.N.W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Ghazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazi, S.M., Aliabadi, R. Validation study of using the free volume approximation to confined thermotropic and lyotropic liquid-crystalline fluids. Eur. Phys. J. E 41, 112 (2018). https://doi.org/10.1140/epje/i2018-11725-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11725-5

Keywords

Navigation