Skip to main content
Log in

Tunable transmission of a nematic liquid crystal as defect in a 1D periodic structure of dielectric materials by orientation and re-orientation of liquid crystal molecules

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this paper, we investigate tunable transmission characteristics of a one-dimensional periodic structure (1DPS), designed with periodic dielectric materials containing a nematic liquid crystal (NLC) as a defect layer, on the basis of orientation and re-orientation of LC molecules. The nonlinear differential equation for the director of the liquid crystal under the light field is solved numerically. The relation between the liquid crystal director and the intensity of the electromagnetic wave (EMW) is derived. Transmittances of the liquid crystal defect layer in the 1DPS are calculated with the variation of the intensity of the incident wave and liquid crystal director tilt angles. By varying the director tilt angle of the liquid crystal molecules as well as the incident angle of the EMW, the shifting of the transmitted defect mode wavelengths is studied. Such study is helpful to understand how orientation and reorientation of the molecules affect the transmittance of the considered periodic structure when the EMW interacts with an embedded liquid crystal as a defect layer in the 1DPS of dielectric materials. Such photonic structure of dielectric materials with the liquid crystal layer as a defect layer can be used to fabricate bistable switches, optical filters, feedback lasers, etc.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, New York, 1992)

  2. I.C. Khoo, Liquid Crystals (Wiley Interscience, NJ, 2007)

  3. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Electromagnetic Wave (Princeton University Press, Princeton, 1995)

  4. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  5. E. Miroshnichenko, I. Pinkevych, Y.S. Kivshar, Opt. Express 14, 2839 (2006)

    Article  ADS  Google Scholar 

  6. K. Bush, S. John, Phys. Rev. Lett. 83, 967 (1999)

    Article  ADS  Google Scholar 

  7. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, Appl. Phys. Lett. 75, 932 (1999)

    Article  ADS  Google Scholar 

  8. S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Bush, A. Birner, U. Gosele, V. Lehmann, Phys. Rev. B 61, R2389 (2000)

    Article  ADS  Google Scholar 

  9. Ch. Schuller, F. Klopf, J.P. Reithmaier, M. Kamp, A. Forchel, Appl. Phys. Lett. 82, 2767 (2003)

    Article  ADS  Google Scholar 

  10. D. Kang, J.E. Maclennan, N.A. Clerk, A.A. Zakhidov, R.H. Baughman, Phys. Rev. Lett. 86, 4052 (2001)

    Article  ADS  Google Scholar 

  11. E. Graubard, J.S. King, S. Jain, C.J. Summers, Y. Zhang Williams, I.C. Khoo, Phys. Rev. B 72, 233105 (2005)

    Article  ADS  Google Scholar 

  12. V.G. Arkhipkin, V.A. Gunyakov, S.A. Myslivsts, V.Ya. Zyryanov, V.F. Shabanov, Eur. Phys. J. E 24, 297 (2007)

    Article  Google Scholar 

  13. Y.M. Strelniker, D. Stroud, A.O. Voznesenkaya, Eur. Phys. J. B 52, 1 (2006)

    Article  ADS  Google Scholar 

  14. S.F. Mingaleev, M. Schillinger, D. Hermann, K. Bush, Opt. Lett. 29, 2858 (2004)

    Article  ADS  Google Scholar 

  15. E.P. Kosmidou, E.E. Kriezis, T.D. Tsiboukis, IEEE J. Quantum Electron 41, 657 (2005)

    Article  ADS  Google Scholar 

  16. B.Ya. Zel’dovich, N.V. Tabiryan, Yu.S. Chilingaryan, Zh. Eksp. Teor. Fiz. 81, 72 (1981) (Sov. Phys. JETP 81

    Google Scholar 

  17. H.L. Ong, Phys. Rev. A. 28, 2393 (1983)

    Article  ADS  Google Scholar 

  18. M.S. Mohamed, M.F.O. Hameed, M.M. El-Okr, Salah S.A. Obayya, Optik 127, 8774 (2016)

    Article  ADS  Google Scholar 

  19. S.R. Entezar, A. Madani, M.K. Habil, A. Namdar, H. Tajalli, J. Mod. Opt. 60, 1883 (2013)

    Article  ADS  Google Scholar 

  20. R. Ozaki, H. Miyoshi, M. Ozaki, K. Yoshino, Mol. Cryst. Liq. Cryst. 433, 247 (2005)

    Article  Google Scholar 

  21. P.D. Berezin, I.N. Kompanets, V.V. Nikitin, S.A. Pikin, Zh. Eksp. Teor. Fiz. 64, 599 (1973)

    Google Scholar 

  22. I.C. Khoo, Phys. Rev. A 23, 2077 (1981)

    Article  ADS  Google Scholar 

  23. A.C. Polycarpou, M.A. Christou, N.C. Papanicolaou, IEEE Trans. Microwave Theory Tech. 60, 2950 (2012)

    Article  ADS  Google Scholar 

  24. M.J. Stephen, J.P. Straley, Rev. Mod. Phys. 46, 617 (1974)

    Article  ADS  Google Scholar 

  25. L.M. Blinov, Structure and Properties of Liquid Crystals (Springer, New York, 2011)

  26. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, New York, 1988)

  27. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian09 (Gaussian, Inc., Wallingford CT, 2009)

  28. T.C. King, C.J. Wu, Physica E 69, 39 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khem B. Thapa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Thapa, K.B., Kumar, N. et al. Tunable transmission of a nematic liquid crystal as defect in a 1D periodic structure of dielectric materials by orientation and re-orientation of liquid crystal molecules. Eur. Phys. J. E 41, 100 (2018). https://doi.org/10.1140/epje/i2018-11710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11710-0

Keywords

Navigation