Skip to main content
Log in

Power law relationship between diffusion coefficients in multi-component glass forming liquids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The slow down of dynamics in glass forming liquids as the glass transition is approached has been characterised through the Adam-Gibbs relation, which relates relaxation time scales to the configurational entropy. The Adam-Gibbs relation cannot apply simultaneously to all relaxation times scales unless they are coupled, and exhibit closely related temperature dependences. The breakdown of the Stokes-Einstein relation presents an interesting situation to the contrary, and in analysing it, it has recently been shown that the Adam-Gibbs relation applies to diffusion coefficients rather than to viscosity or structural relaxation times related to the decay of density fluctuations. However, for multi-component liquids --the typical cases considered in computer simulations, metallic glass formers, etc.-- such a statement raises the question of which diffusion coefficient is described by the Adam-Gibbs relation. All diffusion coefficients can be consistently described by the Adam-Gibbs relation if they bear a power law relationship with each other. Remarkably, we find that for a wide range of glass formers, and for a wide range of temperatures spanning the normal and the slow relaxation regimes, such a relationship holds. We briefly discuss possible rationalisations of the observed behaviour.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)

    Article  ADS  Google Scholar 

  2. L. Berthier, G. Biroli, J.P. Bouchaud, L. Cipelletti, W. van Saarloos, Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, Vol. 150 (OUP Oxford, 2011).

  3. F.W. Starr, J.F. Douglas, S. Sastry, J. Chem. Phys. 138, 12A541 (2013)

    Article  Google Scholar 

  4. A. Greer, K. Kelton, S. Srikanth, Fragility of Glass-Forming Liquids (Hindustan Book Agency, 2013)

  5. S. Karmakar, C. Dasgupta, S. Sastry, Annu. Rev. Condens. Matter Phys. 5, 255 (2014)

    Article  ADS  Google Scholar 

  6. S. Karmakar, C. Dasgupta, S. Sastry, Rep. Prog. Phys. 79, 016601 (2015)

    Article  ADS  Google Scholar 

  7. E. Rössler, Phys. Rev. Lett. 65, 1595 (1990)

    Article  ADS  Google Scholar 

  8. F. Fujara, B. Geil, H. Sillescu, G. Fleischer, Z. Phys. B: Condens. Matter 88, 195 (1992)

    Article  ADS  Google Scholar 

  9. J.A. Hodgdon, F.H. Stillinger, Phys. Rev. E 48, 207 (1993)

    Article  ADS  Google Scholar 

  10. G. Tarjus, D. Kivelson, J. Chem. Phys. 103, 3071 (1995)

    Article  ADS  Google Scholar 

  11. M.T. Cicerone, M.D. Ediger, J. Chem. Phys. 104, 7210 (1996)

    Article  ADS  Google Scholar 

  12. J. Douglas, D. Leporini, J. Non-Cryst. Solids 235, 137 (1998)

    Article  ADS  Google Scholar 

  13. H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999)

    Article  ADS  Google Scholar 

  14. X. Xia, P.G. Wolynes, J. Phys. Chem. B 105, 6570 (2001)

    Article  Google Scholar 

  15. D. Bonn, W.K. Kegel, J. Chem. Phys. 118, 2005 (2003)

    Article  ADS  Google Scholar 

  16. L. Berthier, Phys. Rev. E 69, 020201 (2004)

    Article  ADS  Google Scholar 

  17. Y. Jung, J.P. Garrahan, D. Chandler, Phys. Rev. E 69, 061205 (2004)

    Article  ADS  Google Scholar 

  18. S.H. Chong, Phys. Rev. E 78, 041501 (2008)

    Article  ADS  Google Scholar 

  19. S.H. Chong, W. Kob, Phys. Rev. Lett. 102, 025702 (2009)

    Article  ADS  Google Scholar 

  20. S.F. Swallen, M. Ediger, Soft Matter 7, 10339 (2011)

    Article  ADS  Google Scholar 

  21. J. Langer, arXiv preprint, arXiv:1108.2738 (2011)

  22. B. Charbonneau, P. Charbonneau, Y. Jin, G. Parisi, F. Zamponi, J. Chem. Phys. 139, 164502 (2013)

    Article  ADS  Google Scholar 

  23. S. Sengupta, S. Karmakar, J. Chem. Phys. 140, 224505 (2014)

    Article  ADS  Google Scholar 

  24. B.P. Bhowmik, R. Das, S. Karmakar, J. Stat. Mech.: Theory Exp. 2016, 074003 (2016)

    Article  Google Scholar 

  25. A.D.S. Parmar, S. Shiladitya, S. Sastry, Phys. Rev. Lett. 119, 056001 (2017)

    Article  ADS  Google Scholar 

  26. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)

    Article  ADS  Google Scholar 

  27. S. Sastry, Nature 409, 164 (2001)

    Article  ADS  Google Scholar 

  28. S. Sengupta, F. Vasconcelos, F. Affouard, S. Sastry, J. Chem. Phys. 135, 194503 (2011)

    Article  ADS  Google Scholar 

  29. A.D. Parmar, S. Sastry, J. Phys. Chem. B 119, 11243 (2015)

    Article  Google Scholar 

  30. A.D. Parmar, P. Kundu, S. Sastry, J. Chem. Sci. 129, 1081 (2017)

    Article  Google Scholar 

  31. C. Angell, J. Res. Natl. Inst. Stand. Technol. 102, 171 (1997)

    Article  Google Scholar 

  32. A. Scala, F.W. Starr, E. La Nave, F. Sciortino, H.E. Stanley, Nature 406, 166 (2000)

    Article  ADS  Google Scholar 

  33. S. Karmakar, C. Dasgupta, S. Sastry, Proc. Natl. Acad. Sci. U.S.A. 106, 3675 (2009)

    Article  ADS  Google Scholar 

  34. S. Sengupta, T.B. Schrøder, S. Sastry, Eur. Phys. J. E 36, 141 (2013)

    Article  Google Scholar 

  35. A. Banerjee, S. Sengupta, S. Sastry, S.M. Bhattacharyya, Phys. Rev. Lett. 113, 225701 (2014)

    Article  ADS  Google Scholar 

  36. K. Ito, C.T. Moynihan, C.A. Angell, Nature 398, 492 (1999)

    Article  ADS  Google Scholar 

  37. S. Sastry, Nature 398, 467 (1999)

    Article  ADS  Google Scholar 

  38. F.W. Starr, S. Sastry, E. La Nave, A. Scala, H.E. Stanley, F. Sciortino, Phys. Rev. E 63, 041201 (2001)

    Article  ADS  Google Scholar 

  39. F.W. Starr, C.A. Angell, H.E. Stanley, Physica A: Stat. Mech. Appl. 323, 51 (2003)

    Article  ADS  Google Scholar 

  40. S. Sengupta, S. Karmakar, C. Dasgupta, S. Sastry, Phys. Rev. Lett. 109, 095705 (2012)

    Article  ADS  Google Scholar 

  41. T. Kirkpatrick, D. Thirumalai, P.G. Wolynes, Phys. Rev. A 40, 1045 (1989)

    Article  ADS  Google Scholar 

  42. V. Lubchenko, P.G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007)

    Article  ADS  Google Scholar 

  43. J.P. Bouchaud, G. Biroli, J. Chem. Phys. 121, 7347 (2004)

    Article  ADS  Google Scholar 

  44. J. Dudowicz, K.F. Freed, J.F. Douglas, Adv. Chem. Phys. 137, 125 (2008)

    Google Scholar 

  45. K.F. Freed, J. Chem. Phys. 141, 141102 (2014)

    Article  ADS  Google Scholar 

  46. S. Sengupta, S. Karmakar, C. Dasgupta, S. Sastry, J. Chem. Phys. 138, 12A548 (2013)

    Article  Google Scholar 

  47. H. Schober, H. Peng, Phys. Rev. E 93, 052607 (2016)

    Article  ADS  Google Scholar 

  48. S. Sastry, P.G. Debenedetti, F.H. Stillinger, Nature 393, 554 (1998)

    Article  ADS  Google Scholar 

  49. S. Sastry, PhysChemComm 3, 79 (2000)

    Article  Google Scholar 

  50. A. Banerjee, M.K. Nandi, S. Sastry, S. Maitra Bhattacharyya, J. Chem. Phys. 147, 024504 (2017)

    Article  ADS  Google Scholar 

  51. M. Kluge, H. Schober, Phys. Rev. B 70, 224209 (2004)

    Article  ADS  Google Scholar 

  52. H. Teichler, J. Non-Cryst. Solids 293, 339 (2001)

    Article  ADS  Google Scholar 

  53. R.K. Murarka, B. Bagchi, Phys. Rev. E 67, 051504 (2003)

    Article  ADS  Google Scholar 

  54. L. Angelani, G. Foffi, J. Phys.: Condens. Matter 19, 256207 (2007)

    ADS  Google Scholar 

  55. A. Carre, J. Horbach, S. Ispas, W. Kob, EPL 82, 17001 (2008)

    Article  ADS  Google Scholar 

  56. P. Fielitz, M.P. Macht, V. Naundorf, G. Frohberg, J. Non-Cryst. Solids 250, 674 (1999)

    Article  ADS  Google Scholar 

  57. M.P. Macht, V. Naundorf, P. Fielitz, J. Rüsing, T. Zumkley, G. Frohberg, Mater. Sci. Eng. A 304, 646 (2001)

    Article  Google Scholar 

  58. S. Sengupta, T.B. Schrøder, S. Sastry, Eur. Phys. J. E 36, 141 (2013)

    Article  Google Scholar 

  59. D.N. Perera, P. Harrowell, J. Chem. Phys. 111, 5441 (1999)

    Article  ADS  Google Scholar 

  60. L. Berthier, T.A. Witten, Phys. Rev. E 80, 021502 (2009)

    Article  ADS  Google Scholar 

  61. I. Saika-Voivod, E. Zaccarelli, F. Sciortino, S.V. Buldyrev, P. Tartaglia, Phys. Rev. E 70, 041401 (2004)

    Article  ADS  Google Scholar 

  62. W. Kob, H.C. Andersen, Phys. Rev. E 51, 4626 (1995)

    Article  ADS  Google Scholar 

  63. S. Karmakar, A. Lemaitre, E. Lerner, I. Procaccia, Phys. Rev. Lett. 104, 215502 (2010)

    Article  ADS  Google Scholar 

  64. W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory, Vol. 143 (OUP Oxford, 2008)

  65. K. Binder, W. Kob, Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics (World Scientific, 2011)

  66. N. Bidhoodi, S.P. Das, arXiv preprint, arXiv:1803.11483 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanth Sastry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmar, A.D.S., Sengupta, S. & Sastry, S. Power law relationship between diffusion coefficients in multi-component glass forming liquids. Eur. Phys. J. E 41, 90 (2018). https://doi.org/10.1140/epje/i2018-11702-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11702-0

Keywords

Navigation