Skip to main content

Advertisement

SpringerLink
KymoKnot: A web server and software package to identify and locate knots in trajectories of linear or circular polymers
Download PDF
Download PDF

Associated Content

Part of a collection:

Advances in Computational Methods for Soft Matter Systems

  • Regular Article
  • Open Access
  • Published: 07 June 2018

KymoKnot: A web server and software package to identify and locate knots in trajectories of linear or circular polymers

  • Luca Tubiana1,
  • Guido Polles2,
  • Enzo Orlandini3 &
  • …
  • Cristian Micheletti4 

The European Physical Journal E volume 41, Article number: 72 (2018) Cite this article

  • 736 Accesses

  • 30 Citations

  • 2 Altmetric

  • Metrics details

Abstract.

The KymoKnot software package and web server identifies and locates physical knots or proper knots in a series of polymer conformations. It is mainly intended as an analysis tool for trajectories of linear or circular polymers, but it can be used on single instances too, e.g. protein structures in PDB format. A key element of the software package is the so-called minimally interfering chain closure algorithm that is used to detect physical knots in open chains and to locate the knotted region in both open and closed chains. The web server offers a user-friendly graphical interface that identifies the knot type and highlights the knotted region on each frame of the trajectory, which the user can visualize interactively from various viewpoints. The dynamical evolution of the knotted region along the chain contour is presented as a kymograph. All data can be downloaded in text format. The KymoKnot package is licensed under the BSD 3-Clause licence. The server is publicly available at http://kymoknot.sissa.it/kymoknot/interactive.php.

Graphical abstract

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D.W. Sumners, S.G. Whittington, J. Phys. A: Math. Gen. 21, 1689 (1988)

    Article  ADS  Google Scholar 

  2. Kleanthes Koniaris, M. Muthukumar, Phys. Rev. Lett. 66, 2211 (1991)

    Article  ADS  Google Scholar 

  3. E. Orlandini, S.G. Whittington, Rev. Mod. Phys. 79, 611 (2007)

    Article  ADS  Google Scholar 

  4. S.G. Whittington, E.J. Janse van Rensburg, J. Phys. A: Math. Theor. 23, 3573 (1990)

    Article  ADS  Google Scholar 

  5. M.L. Mansfield, Macromolecules 27, 5924 (1994)

    Article  ADS  Google Scholar 

  6. Peter Virnau, Yacov Kantor, Mehran Kardar, J. Am. Chem. Soc. 127, 15102 (2005)

    Article  Google Scholar 

  7. M. Baiesi, E. Orlandini, A.L. Stella, F. Zonta, Phys. Rev. Lett. 106, 258301 (2011)

    Article  ADS  Google Scholar 

  8. José M. Sogo, Andrzej Stasiak, María Luisa Martínez-Robles, Dora B. Krimer, Pablo Hernández, Jorge B. Schvartzman, J. Mol. Biol. 286, 637 (1999)

    Article  Google Scholar 

  9. V.V. Rybenkov, N.R. Cozzarelli, A.V. Vologodskii, Proc. Natl. Acad. Sci. U.S.A. 90, 5307 (1993)

    Article  ADS  Google Scholar 

  10. J.C. Wang, S.Y. Shaw, Science 260, 533 (1993)

    Article  ADS  Google Scholar 

  11. Javier Arsuaga, Mariel Vazquez, Sonia Trigueros, De Witt Sumners, Joaquim Roca, Proc. Natl. Acad. Sci. U.S.A. 99, 5373 (2002)

    Article  ADS  Google Scholar 

  12. Javier Arsuaga, Mariel Vazquez, Paul McGuirk, Sonia Trigueros, De Witt Sumners, Joaquim Roca, Proc. Natl. Acad. Sci. U.S.A. 102, 9165 (2005)

    Article  ADS  Google Scholar 

  13. Davide Marenduzzo, Enzo Orlandini, Andrzej Stasiak, De Witt Sumners, Luca Tubiana, Cristian Micheletti, Proc. Natl. Acad. Sci. U.S.A. 106, 22269 (2009)

    Article  ADS  Google Scholar 

  14. Davide Marenduzzo, Cristian Micheletti, Enzo Orlandini et al., Proc. Natl. Acad. Sci. U.S.A. 110, 20081 (2013)

    Article  Google Scholar 

  15. W.R. Taylor, Nature 406, 916 (2000)

    Article  ADS  Google Scholar 

  16. Peter Virnau, Leonid A. Mirny, Mehran Kardar, PLoS Comput. Biol. 2, e122 (2006)

    Article  ADS  Google Scholar 

  17. Anna L. Mallam, Joseph M. Rogers, Sophie E. Jackson, Proc. Natl. Acad. Sci. U.S.A. 107, 8189 (2010)

    Article  ADS  Google Scholar 

  18. R. Potestio, C. Micheletti, H. Orland, PLoS Comput. Biol. 6, e1000864 (2010)

    Article  ADS  Google Scholar 

  19. Michal Jamroz, Wanda Niemyska, Eric J. Rawdon, Andrzej Stasiak, Kenneth C. Millett, Piotr Sułkowski, Joanna I. Sulkowska, Nucl. Acids Res. 43, D306 (2014)

    Article  Google Scholar 

  20. Nicole C.H. Lim, Sophie E. Jackson, J. Phys.: Condens. Matter 27, 354101 (2015)

    Google Scholar 

  21. Sophie E. Jackson, Antonio Suma, Cristian Micheletti, Curr. Opin. Struct. Biol. 42, 6 (2017)

    Article  Google Scholar 

  22. Pawel Dabrowski-Tumanski, Joanna I. Sulkowska, Polymers 9, 454 (2017)

    Article  Google Scholar 

  23. Patrícia F.N. Faísca, Comput. Struct. Biotechnol. J. 13, 459 (2015)

    Article  Google Scholar 

  24. Cristian Micheletti, Marco Di Stefano, Henri Orland, Proc. Natl. Acad. Sci. U.S.A. 112, 2052 (2015)

    Article  ADS  Google Scholar 

  25. Cristian Micheletti, Davide Marenduzzo, Enzo Orlandini, Phys. Rep. 504, 1 (2011)

    Article  MathSciNet  Google Scholar 

  26. D. Meluzzi, D.E. Smith, G. Arya, Annu. Rev. Biophys. 39, 349 (2010)

    Article  Google Scholar 

  27. Danielle J. Mai, Charles M. Schroeder, Curr. Opin. Colloid Interface Sci. 26, 28 (2016)

    Article  Google Scholar 

  28. O. Farago, Y. Kantor, M. Kardar, Europhys. Lett. 60, 53 (2002)

    Article  ADS  Google Scholar 

  29. X.R. Bao, H.J. Lee, S.R. Quake, Phys. Rev. Lett. 91, 265506 (2003)

    Article  ADS  Google Scholar 

  30. Lei Huang, Dmitrii E. Makarov, J. Phys. Chem. A 111, 10338 (2007)

    Article  Google Scholar 

  31. R. Matthews, A.A. Louis, J.M. Yeomans, EPL 89, 20001 (2010)

    Article  ADS  Google Scholar 

  32. Peter Poier, Christos N. Likos, Richard Matthews, Macromolecules 47, 3394 (2014)

    Article  ADS  Google Scholar 

  33. Michele Caraglio, Cristian Micheletti, Enzo Orlandini, Phys. Rev. Lett. 115, 188301 (2015)

    Article  ADS  Google Scholar 

  34. S. Najafi, L. Tubiana, R. Podgornik, R. Potestio, EPL 114, 50007 (2016)

    Article  ADS  Google Scholar 

  35. C. Benjamin Renner, Patrick S. Doyle, Soft Matter 11, 3105 (2015)

    Article  ADS  Google Scholar 

  36. Vivek Narsimhan, Alexander R. Klotz, Patrick S. Doyle, ACS Macro Lett. 6, 1285 (2017)

    Article  Google Scholar 

  37. Alexander R. Klotz, Vivek Narsimhan, Beatrice W. Soh, Patrick S. Doyle, Macromolecules 50, 4074 (2017)

    Article  ADS  Google Scholar 

  38. Luca Tubiana, Enzo Orlandini, Cristian Micheletti, Phys. Rev. Lett. 107, 188302 (2011)

    Article  Google Scholar 

  39. Jing Tang, Ning Du, Patrick S. Doyle, Proc. Natl. Acad. Sci. U.S.A. 108, 16153 (2011)

    Article  ADS  Google Scholar 

  40. A. Rosa, M. Di Ventra, C. Micheletti, Phys. Rev. Lett. 109, 118301 (2012)

    Article  ADS  Google Scholar 

  41. Cristian Micheletti, Enzo Orlandini, Macromolecules 45, 2113 (2012)

    Article  Google Scholar 

  42. Cristian Micheletti, Enzo Orlandini, Soft Matter 8, 10959 (2012)

    Article  Google Scholar 

  43. Calin Plesa, Daniel Verschueren, Sergii Pud, Jaco van der Torre, Justus W. Ruitenberg, Menno J. Witteveen, Magnus P. Jonsson, Alexander Y. Grosberg, Yitzhak Rabin, Cees Dekker, Nat. Nanotechnol. 11, 1093 (2016)

    Article  ADS  Google Scholar 

  44. Antonio Suma, Cristian Micheletti, Proc. Natl. Acad. Sci. U.S.A. 114, E2991 (2017)

    Article  Google Scholar 

  45. Liang Dai, Johan R.C. van der Maarel, Patrick S. Doyle, ACS Macro Lett. 1, 732 (2012)

    Article  Google Scholar 

  46. Giuseppe D'Adamo, Cristian Micheletti, Macromolecules 48, 6337 (2015)

    Article  Google Scholar 

  47. B. Marcone, E. Orlandini, A.L. Stella, F. Zonta, Phys. Rev. E 75, 041105 (2007)

    Article  ADS  Google Scholar 

  48. Liang Dai, C. Benjamin Renner, Patrick S. Doyle, Macromolecules 48, 2812 (2015)

    Article  ADS  Google Scholar 

  49. S.G. Whittington, D.W. Sumners, J. Phys. A: Math. Gen. 23, 1471 (1990)

    Article  ADS  Google Scholar 

  50. Marc L. Mansfield, Nat. Struct. Mol. Biol. 1, 213 (1994)

    Article  Google Scholar 

  51. M.L. Mansfield, Macromolecules 31, 4030 (1998)

    Article  ADS  Google Scholar 

  52. A. Stasiak K. Millett, A. Dobay, Macromolecules 38, 601 (2005)

    Article  ADS  Google Scholar 

  53. Luca Tubiana, Enzo Orlandini, Cristian Micheletti, Prog. Theor. Phys. Suppl. 191, 192 (2011)

    Article  Google Scholar 

  54. Grigory Kolesov, Peter Virnau, Mehran Kardar, Leonid A. Mirny, Nucl. Acids Res. 35, W425 (2007) (Suppl. 2)

    Article  Google Scholar 

  55. Yan-Long Lai, Chih-Chieh Chen, Jenn-Kang Hwang, Nucl. Acids Res. 40, W228 (2012)

    Article  Google Scholar 

  56. Rhonald C. Lua, Bioinformatics 28, 2069 (2012)

    Article  Google Scholar 

  57. Cristian Micheletti, Enzo Orlandini, ACS Macro Lett. 3, 876 (2014)

    Article  Google Scholar 

  58. Ivan Coluzza, Peter D.J. van Oostrum, Barbara Capone, Erik Reimhult, Christoph Dellago, Phys. Rev. Lett. 110, 075501 (2013)

    Article  ADS  Google Scholar 

  59. L. Tubiana, A. Rosa, F. Fragiacomo, C. Micheletti, Macromolecules 46, 3669 (2013)

    Article  ADS  Google Scholar 

  60. Luca Tubiana, Phys. Rev. E 89, 052602 (2014)

    Article  ADS  Google Scholar 

  61. Liang Dai, C. Benjamin Renner, Patrick S. Doyle, Phys. Rev. Lett. 114, 037801 (2015)

    Article  ADS  Google Scholar 

  62. Miguel A. Soler, Antonio Rey, Patrícia F.N. Faísca, Phys. Chem. Chem. Phys. 18, 26391 (2016)

    Article  Google Scholar 

  63. Raffaello Potestio, Luca Tubiana, Soft Matter 12, 669 (2016)

    Article  Google Scholar 

  64. Saeed Najafi, Rudolf Podgornik, Raffaello Potestio, Luca Tubiana, Polymers 8, 347 (2016)

    Article  Google Scholar 

  65. E. Orlandini, S.G. Whittington, Rev. Mod. Phys. 79, 611 (2007)

    Article  ADS  Google Scholar 

  66. Edwin Catmull, Raphael Rom, A class of local interpolating splines, in Computer Aided Geometric Design, edited by Robert E. Barnill, Richard F. Riesenfeld (Academic Press, 1974) pp. 317--326

Download references

Acknowledgments

Open Access funding provided by University of Vienna.

Author information

Authors and Affiliations

  1. Computational Physics Department, University of Vienna, Sensengasse 8/10, 1090, Vienna, Austria

    Luca Tubiana

  2. Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 90089, Los Angeles, CA, USA

    Guido Polles

  3. Dipartimento di Fisica e Astronomia and Sezione INFN, Università di Padova, Via Marzolo 8, 35131, Padova, Italy

    Enzo Orlandini

  4. SISSA, International School for Advanced Studies, Via Bonomea 265, I-34136, Trieste, Italy

    Cristian Micheletti

Authors
  1. Luca Tubiana
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Guido Polles
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Enzo Orlandini
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Cristian Micheletti
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Luca Tubiana.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tubiana, L., Polles, G., Orlandini, E. et al. KymoKnot: A web server and software package to identify and locate knots in trajectories of linear or circular polymers. Eur. Phys. J. E 41, 72 (2018). https://doi.org/10.1140/epje/i2018-11681-0

Download citation

  • Received: 15 February 2018

  • Accepted: 18 May 2018

  • Published: 07 June 2018

  • DOI: https://doi.org/10.1140/epje/i2018-11681-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Topical issue: Advances in Computational Methods for Soft Matter Systems
Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Advances in Computational Methods for Soft Matter Systems

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.