Advertisement

KymoKnot: A web server and software package to identify and locate knots in trajectories of linear or circular polymers

  • Luca TubianaEmail author
  • Guido Polles
  • Enzo Orlandini
  • Cristian Micheletti
Open Access
Regular Article
Part of the following topical collections:
  1. Advances in Computational Methods for Soft Matter Systems

Abstract.

The KymoKnot software package and web server identifies and locates physical knots or proper knots in a series of polymer conformations. It is mainly intended as an analysis tool for trajectories of linear or circular polymers, but it can be used on single instances too, e.g. protein structures in PDB format. A key element of the software package is the so-called minimally interfering chain closure algorithm that is used to detect physical knots in open chains and to locate the knotted region in both open and closed chains. The web server offers a user-friendly graphical interface that identifies the knot type and highlights the knotted region on each frame of the trajectory, which the user can visualize interactively from various viewpoints. The dynamical evolution of the knotted region along the chain contour is presented as a kymograph. All data can be downloaded in text format. The KymoKnot package is licensed under the BSD 3-Clause licence. The server is publicly available at http://kymoknot.sissa.it/kymoknot/interactive.php.

Graphical abstract

Keywords

Topical issue: Advances in Computational Methods for Soft Matter Systems 

Notes

Acknowledgments

Open Access funding provided by University of Vienna.

References

  1. 1.
    D.W. Sumners, S.G. Whittington, J. Phys. A: Math. Gen. 21, 1689 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    Kleanthes Koniaris, M. Muthukumar, Phys. Rev. Lett. 66, 2211 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    E. Orlandini, S.G. Whittington, Rev. Mod. Phys. 79, 611 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    S.G. Whittington, E.J. Janse van Rensburg, J. Phys. A: Math. Theor. 23, 3573 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    M.L. Mansfield, Macromolecules 27, 5924 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Peter Virnau, Yacov Kantor, Mehran Kardar, J. Am. Chem. Soc. 127, 15102 (2005)CrossRefGoogle Scholar
  7. 7.
    M. Baiesi, E. Orlandini, A.L. Stella, F. Zonta, Phys. Rev. Lett. 106, 258301 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    José M. Sogo, Andrzej Stasiak, María Luisa Martínez-Robles, Dora B. Krimer, Pablo Hernández, Jorge B. Schvartzman, J. Mol. Biol. 286, 637 (1999)CrossRefGoogle Scholar
  9. 9.
    V.V. Rybenkov, N.R. Cozzarelli, A.V. Vologodskii, Proc. Natl. Acad. Sci. U.S.A. 90, 5307 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    J.C. Wang, S.Y. Shaw, Science 260, 533 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    Javier Arsuaga, Mariel Vazquez, Sonia Trigueros, De Witt Sumners, Joaquim Roca, Proc. Natl. Acad. Sci. U.S.A. 99, 5373 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Javier Arsuaga, Mariel Vazquez, Paul McGuirk, Sonia Trigueros, De Witt Sumners, Joaquim Roca, Proc. Natl. Acad. Sci. U.S.A. 102, 9165 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Davide Marenduzzo, Enzo Orlandini, Andrzej Stasiak, De Witt Sumners, Luca Tubiana, Cristian Micheletti, Proc. Natl. Acad. Sci. U.S.A. 106, 22269 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Davide Marenduzzo, Cristian Micheletti, Enzo Orlandini et al., Proc. Natl. Acad. Sci. U.S.A. 110, 20081 (2013)CrossRefGoogle Scholar
  15. 15.
    W.R. Taylor, Nature 406, 916 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Peter Virnau, Leonid A. Mirny, Mehran Kardar, PLoS Comput. Biol. 2, e122 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Anna L. Mallam, Joseph M. Rogers, Sophie E. Jackson, Proc. Natl. Acad. Sci. U.S.A. 107, 8189 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    R. Potestio, C. Micheletti, H. Orland, PLoS Comput. Biol. 6, e1000864 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Michal Jamroz, Wanda Niemyska, Eric J. Rawdon, Andrzej Stasiak, Kenneth C. Millett, Piotr Sułkowski, Joanna I. Sulkowska, Nucl. Acids Res. 43, D306 (2014)CrossRefGoogle Scholar
  20. 20.
    Nicole C.H. Lim, Sophie E. Jackson, J. Phys.: Condens. Matter 27, 354101 (2015)Google Scholar
  21. 21.
    Sophie E. Jackson, Antonio Suma, Cristian Micheletti, Curr. Opin. Struct. Biol. 42, 6 (2017)CrossRefGoogle Scholar
  22. 22.
    Pawel Dabrowski-Tumanski, Joanna I. Sulkowska, Polymers 9, 454 (2017)CrossRefGoogle Scholar
  23. 23.
    Patrícia F.N. Faísca, Comput. Struct. Biotechnol. J. 13, 459 (2015)CrossRefGoogle Scholar
  24. 24.
    Cristian Micheletti, Marco Di Stefano, Henri Orland, Proc. Natl. Acad. Sci. U.S.A. 112, 2052 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Cristian Micheletti, Davide Marenduzzo, Enzo Orlandini, Phys. Rep. 504, 1 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Meluzzi, D.E. Smith, G. Arya, Annu. Rev. Biophys. 39, 349 (2010)CrossRefGoogle Scholar
  27. 27.
    Danielle J. Mai, Charles M. Schroeder, Curr. Opin. Colloid Interface Sci. 26, 28 (2016)CrossRefGoogle Scholar
  28. 28.
    O. Farago, Y. Kantor, M. Kardar, Europhys. Lett. 60, 53 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    X.R. Bao, H.J. Lee, S.R. Quake, Phys. Rev. Lett. 91, 265506 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Lei Huang, Dmitrii E. Makarov, J. Phys. Chem. A 111, 10338 (2007)CrossRefGoogle Scholar
  31. 31.
    R. Matthews, A.A. Louis, J.M. Yeomans, EPL 89, 20001 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Peter Poier, Christos N. Likos, Richard Matthews, Macromolecules 47, 3394 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Michele Caraglio, Cristian Micheletti, Enzo Orlandini, Phys. Rev. Lett. 115, 188301 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    S. Najafi, L. Tubiana, R. Podgornik, R. Potestio, EPL 114, 50007 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    C. Benjamin Renner, Patrick S. Doyle, Soft Matter 11, 3105 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Vivek Narsimhan, Alexander R. Klotz, Patrick S. Doyle, ACS Macro Lett. 6, 1285 (2017)CrossRefGoogle Scholar
  37. 37.
    Alexander R. Klotz, Vivek Narsimhan, Beatrice W. Soh, Patrick S. Doyle, Macromolecules 50, 4074 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Luca Tubiana, Enzo Orlandini, Cristian Micheletti, Phys. Rev. Lett. 107, 188302 (2011)CrossRefGoogle Scholar
  39. 39.
    Jing Tang, Ning Du, Patrick S. Doyle, Proc. Natl. Acad. Sci. U.S.A. 108, 16153 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    A. Rosa, M. Di Ventra, C. Micheletti, Phys. Rev. Lett. 109, 118301 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    Cristian Micheletti, Enzo Orlandini, Macromolecules 45, 2113 (2012)CrossRefGoogle Scholar
  42. 42.
    Cristian Micheletti, Enzo Orlandini, Soft Matter 8, 10959 (2012)CrossRefGoogle Scholar
  43. 43.
    Calin Plesa, Daniel Verschueren, Sergii Pud, Jaco van der Torre, Justus W. Ruitenberg, Menno J. Witteveen, Magnus P. Jonsson, Alexander Y. Grosberg, Yitzhak Rabin, Cees Dekker, Nat. Nanotechnol. 11, 1093 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Antonio Suma, Cristian Micheletti, Proc. Natl. Acad. Sci. U.S.A. 114, E2991 (2017)CrossRefGoogle Scholar
  45. 45.
    Liang Dai, Johan R.C. van der Maarel, Patrick S. Doyle, ACS Macro Lett. 1, 732 (2012)CrossRefGoogle Scholar
  46. 46.
    Giuseppe D'Adamo, Cristian Micheletti, Macromolecules 48, 6337 (2015)CrossRefGoogle Scholar
  47. 47.
    B. Marcone, E. Orlandini, A.L. Stella, F. Zonta, Phys. Rev. E 75, 041105 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    Liang Dai, C. Benjamin Renner, Patrick S. Doyle, Macromolecules 48, 2812 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    S.G. Whittington, D.W. Sumners, J. Phys. A: Math. Gen. 23, 1471 (1990)ADSCrossRefGoogle Scholar
  50. 50.
    Marc L. Mansfield, Nat. Struct. Mol. Biol. 1, 213 (1994)CrossRefGoogle Scholar
  51. 51.
    M.L. Mansfield, Macromolecules 31, 4030 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    A. Stasiak K. Millett, A. Dobay, Macromolecules 38, 601 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    Luca Tubiana, Enzo Orlandini, Cristian Micheletti, Prog. Theor. Phys. Suppl. 191, 192 (2011)CrossRefGoogle Scholar
  54. 54.
    Grigory Kolesov, Peter Virnau, Mehran Kardar, Leonid A. Mirny, Nucl. Acids Res. 35, W425 (2007) (Suppl. 2)CrossRefGoogle Scholar
  55. 55.
    Yan-Long Lai, Chih-Chieh Chen, Jenn-Kang Hwang, Nucl. Acids Res. 40, W228 (2012)CrossRefGoogle Scholar
  56. 56.
    Rhonald C. Lua, Bioinformatics 28, 2069 (2012)CrossRefGoogle Scholar
  57. 57.
    Cristian Micheletti, Enzo Orlandini, ACS Macro Lett. 3, 876 (2014)CrossRefGoogle Scholar
  58. 58.
    Ivan Coluzza, Peter D.J. van Oostrum, Barbara Capone, Erik Reimhult, Christoph Dellago, Phys. Rev. Lett. 110, 075501 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    L. Tubiana, A. Rosa, F. Fragiacomo, C. Micheletti, Macromolecules 46, 3669 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    Luca Tubiana, Phys. Rev. E 89, 052602 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    Liang Dai, C. Benjamin Renner, Patrick S. Doyle, Phys. Rev. Lett. 114, 037801 (2015)ADSCrossRefGoogle Scholar
  62. 62.
    Miguel A. Soler, Antonio Rey, Patrícia F.N. Faísca, Phys. Chem. Chem. Phys. 18, 26391 (2016)CrossRefGoogle Scholar
  63. 63.
    Raffaello Potestio, Luca Tubiana, Soft Matter 12, 669 (2016)CrossRefGoogle Scholar
  64. 64.
    Saeed Najafi, Rudolf Podgornik, Raffaello Potestio, Luca Tubiana, Polymers 8, 347 (2016)CrossRefGoogle Scholar
  65. 65.
    E. Orlandini, S.G. Whittington, Rev. Mod. Phys. 79, 611 (2007)ADSCrossRefGoogle Scholar
  66. 66.
    Edwin Catmull, Raphael Rom, A class of local interpolating splines, in Computer Aided Geometric Design, edited by Robert E. Barnill, Richard F. Riesenfeld (Academic Press, 1974) pp. 317--326Google Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Luca Tubiana
    • 1
    Email author
  • Guido Polles
    • 2
  • Enzo Orlandini
    • 3
  • Cristian Micheletti
    • 4
  1. 1.Computational Physics DepartmentUniversity of ViennaViennaAustria
  2. 2.Molecular and Computational Biology, Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Dipartimento di Fisica e Astronomia and Sezione INFNUniversità di PadovaPadovaItaly
  4. 4.SISSAInternational School for Advanced StudiesTriesteItaly

Personalised recommendations