Skip to main content

Concurrent coupling of realistic and ideal models of liquids and solids in Hamiltonian adaptive resolution simulations

Abstract.

To understand the properties of a complex system it is often illuminating to perform a comparison with a simpler, even idealised one. A prototypical application of this approach is the calculation of free energies and chemical potentials in liquids, which can be decomposed in the sum of ideal and excess contributions. In the same spirit, in computer simulations it is possible to extract useful information on a given system making use of setups where two models, an accurate one and a simpler one, are concurrently employed and directly coupled. Here, we tackle the issue of coupling atomistic or, more in general, interacting models of a system with the corresponding idealised representations: for a liquid, this is the ideal gas, i.e. a collection of non-interacting particles; for a solid, we employ the ideal Einstein crystal, a construct in which particles are decoupled from one another and restrained by a harmonic, exactly integrable potential. We describe in detail the practical and technical aspects of these simulations, and suggest that the concurrent usage and coupling of realistic and ideal models represents a promising strategy to investigate liquids and solids in silico.

Graphical abstract

References

  1. R.P. Feynman, Int. J. Theor. Phys. 21, 467 (1982)

    Article  Google Scholar 

  2. D. Frenkel, J.-P. Hansen, Phys. World 9, 35 (1996)

    Article  Google Scholar 

  3. W.F. van Gunsteren, A.E. Mark, J. Chem. Phys. 108, 6109 (1998)

    Article  ADS  Google Scholar 

  4. W.G. Hoover, 50 Years of Computer Simulation -- a Personal View, arXiv:0812.2086v2 (2008)

  5. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)

  6. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Elsevier, 2001)

  7. M. Praprotnik, L. Delle Site, K. Kremer, Annu. Rev. Phys. Chem. 59, 545 (2008)

    Article  ADS  Google Scholar 

  8. K. Kremer, Soft and fragile matter non equilibrium dynamics, metastability and flow, in SUSSP Proceedings Vol. 53 (IOP Publishing Ltd., 2000) pp. 145--184

  9. A. Mulero (Editor), Theory and Simulation of Hard-Sphere Fluids and Related Systems (Springer, Berlin, Heidelberg, 2008)

  10. K. Kremer, F. Müller-Plathe, MRS Bull. 26, 205 (2001)

    Article  Google Scholar 

  11. R.E. Caflisch, G. Ceder, K. Kremer, T. Pollock, M. Scheffler, E.G. Wang (Editors), Focus on Novel Materials Discovery, New J. Phys. (IOP, 2013 and 2014)

  12. C. Micheletti, P. Carloni, A. Maritan, Proteins 55, 635 (2004)

    Article  Google Scholar 

  13. W.G. Noid, J. Chem. Phys. 139, 090901 (2013)

    Article  ADS  Google Scholar 

  14. F. Pontiggia, A. Zen, C. Micheletti, Biophys. J. 95, 5901 (2008)

    Article  ADS  Google Scholar 

  15. M. Karplus, J. McCammon, Nature 277, 578 (1979)

    Article  ADS  Google Scholar 

  16. M. Karplus, Acc. Chem. Res. 35, 321 (2002)

    Article  Google Scholar 

  17. A. Pérez, F.J. Luque, M. Orozco, Acc. Chem. Res. 45, 196 (2012)

    Article  Google Scholar 

  18. P. Ballone, Entropy 16, 322 (2014)

    Article  ADS  Google Scholar 

  19. J. Kirkwood, J. Chem. Phys. 3, 300 (1935)

    Article  ADS  Google Scholar 

  20. P. Raiteri, A. Laio, F.L. Gervasio, C. Micheletti, M. Parrinello, J. Phys. Chem. B 110, 3533 (2006)

    Article  Google Scholar 

  21. M.E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford University Press, 2010)

  22. M. Praprotnik, L. Delle Site, K. Kremer, Phys. Rev. E 73, 066701 (2006)

    Article  ADS  Google Scholar 

  23. M. Praprotnik, L. Delle Site, K. Kremer, J. Chem. Phys. 126, 134902 (2007)

    Article  ADS  Google Scholar 

  24. S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. Delle Site, K. Kremer, Phys. Rev. Lett. 108, 170602 (2012)

    Article  ADS  Google Scholar 

  25. P. Español, R. Delgado-Buscalioni, R. Everaers, R. Potestio, D. Donadio, K. Kremer, J. Chem. Phys. 142, 064115 (2015)

    Article  ADS  Google Scholar 

  26. A.C. Fogarty, R. Potestio, K. Kremer, J. Chem. Phys. 142, 195101 (2015)

    Article  ADS  Google Scholar 

  27. A.C. Fogarty, R. Potestio, K. Kremer, Proteins 84, 1902 (2016)

    Article  Google Scholar 

  28. R. Fiorentini, K. Kremer, R. Potestio, A.C. Fogarty, J. Chem. Phys. 146, 244113 (2017)

    Article  ADS  Google Scholar 

  29. T. Tarenzi, V. Calandrini, R. Potestio, A. Giorgetti, P. Carloni, J. Chem. Theory Comput. 13, 5647 (2017)

    Article  Google Scholar 

  30. R. Potestio, S. Fritsch, P. Español, R. Delgado-Buscalioni, K. Kremer, R. Everaers, D. Donadio, Phys. Rev. Lett. 110, 108301 (2013)

    Article  ADS  Google Scholar 

  31. R. Potestio, P. Español, R. Delgado-Buscalioni, R. Everaers, K. Kremer, D. Donadio, Phys. Rev. Lett. 111, 060601 (2013)

    Article  ADS  Google Scholar 

  32. M. Heidari, K. Kremer, R. Cortes-Huerto, R. Potestio, Spatially resolved thermodynamic integration: An efficient method to compute chemical potentials of dense fluids, arXiv:1802.08045, submitted to J. Chem. Theory Comput

  33. K. Kreis, A.C. Fogarty, K. Kremer, R. Potestio, Eur. Phys. J. ST 224, 2289 (2015)

    Article  Google Scholar 

  34. M. Praprotnik, L. Delle Site, K. Kremer, J. Chem. Phys. 123, 224106 (2005)

    Article  ADS  Google Scholar 

  35. J. Zavadlav, R. Podgornik, M. Melo, S. Marrink, M. Praprotnik, Eur. Phys. J. ST 225, 1595 (2016)

    Article  Google Scholar 

  36. K. Kreis, R. Potestio, K. Kremer, A.C. Fogarty, J. Chem. Theory Comput. 12, 4067 (2016)

    Article  Google Scholar 

  37. M. Heidari, R. Cortes-Huerto, D. Donadio, R. Potestio, Eur. Phys. J. ST 225, 1505 (2016)

    Article  Google Scholar 

  38. D. Wolf, P. Keblinski, S.R. Phillpot, J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999)

    Article  ADS  Google Scholar 

  39. C.J. Fennell, J.D. Gezelter, J. Chem. Phys. 124, 234104 (2006)

    Article  ADS  Google Scholar 

  40. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)

    Article  Google Scholar 

  41. L.X. Dang, B.M. Pettitt, J. Phys. Chem. 91, 3349 (1987)

    Article  Google Scholar 

  42. Y. Wu, H.L. Tepper, G.A. Voth, J. Chem. Phys. 124, 024503 (2006)

    Article  ADS  Google Scholar 

  43. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  44. J.D. Halverson, T. Brandes, O. Lenz, A. Arnold, S. Bevc, V. Starchenko, K. Kremer, T. Stuehn, D. Reith, Comput. Phys. Commun. 184, 1129 (2013)

    Article  ADS  Google Scholar 

  45. K. Kreis, A.C. Fogarty, K. Kremer, R. Potestio, Eur. Phys. J. ST 224, 2289 (2015)

    Article  Google Scholar 

  46. J. Kohanoff, Comput. Mater. Sci. 2, 221 (1994)

    Article  Google Scholar 

  47. F. Pavia, W.A. Curtin, Model. Simul. Mater. Sci. Eng. 23, 055002 (2015)

    Article  ADS  Google Scholar 

  48. R. Rudd, J. Broughton, Phys. Status Solidi B: Basic Res. 217, 251 (2000)

    Article  ADS  Google Scholar 

  49. J. Rottler, S. Barsky, M.O. Robbins, Phys. Rev. Lett. 89, 148304 (2002)

    Article  ADS  Google Scholar 

  50. G. Csanyi, T. Albaret, M.C. Payne, A.D. Vita, Phys. Rev. Lett. 93, 175503 (2004)

    Article  ADS  Google Scholar 

  51. D. Jiang, E.A. Carter, Acta Mater. 52, 4801 (2004)

    Article  Google Scholar 

  52. G. Lu, E.B. Tadmor, E. Kaxiras, Phys. Rev. B 73, 024108 (2006)

    Article  ADS  Google Scholar 

  53. D. Frenkel, A.J.C. Ladd, J. Chem. Phys. 81, 3188 (1984)

    Article  ADS  Google Scholar 

  54. J.M. Polson, E. Trizac, S. Pronk, D. Frenkel, J. Chem. Phys. 112, 5339 (2000)

    Article  ADS  Google Scholar 

  55. M.A. van der Hoef, J. Chem. Phys. 113, 8142 (2000)

    Article  ADS  Google Scholar 

  56. C. Vega, E.G. Noya, J. Chem. Phys. 127, 154113 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Open Access funding provided by Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaello Potestio.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heidari, M., Cortes-Huerto, R., Kremer, K. et al. Concurrent coupling of realistic and ideal models of liquids and solids in Hamiltonian adaptive resolution simulations. Eur. Phys. J. E 41, 64 (2018). https://doi.org/10.1140/epje/i2018-11675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11675-x

Keywords

  • Topical issue: Advances in Computational Methods for Soft Matter Systems