Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. The European Physical Journal E
  3. Article

Concurrent coupling of realistic and ideal models of liquids and solids in Hamiltonian adaptive resolution simulations

  • Regular Article
  • Open Access
  • Published: 23 May 2018
  • volume 41, Article number: 64 (2018)
Download PDF

You have full access to this open access article

The European Physical Journal E Aims and scope Submit manuscript
Concurrent coupling of realistic and ideal models of liquids and solids in Hamiltonian adaptive resolution simulations
Download PDF
  • Maziar Heidari1,
  • Robinson Cortes-Huerto1,
  • Kurt Kremer1 &
  • …
  • Raffaello Potestio1,2,3 
  • 794 Accesses

  • 7 Citations

  • 44 Altmetric

  • 6 Mentions

  • Explore all metrics

  • Cite this article

Abstract.

To understand the properties of a complex system it is often illuminating to perform a comparison with a simpler, even idealised one. A prototypical application of this approach is the calculation of free energies and chemical potentials in liquids, which can be decomposed in the sum of ideal and excess contributions. In the same spirit, in computer simulations it is possible to extract useful information on a given system making use of setups where two models, an accurate one and a simpler one, are concurrently employed and directly coupled. Here, we tackle the issue of coupling atomistic or, more in general, interacting models of a system with the corresponding idealised representations: for a liquid, this is the ideal gas, i.e. a collection of non-interacting particles; for a solid, we employ the ideal Einstein crystal, a construct in which particles are decoupled from one another and restrained by a harmonic, exactly integrable potential. We describe in detail the practical and technical aspects of these simulations, and suggest that the concurrent usage and coupling of realistic and ideal models represents a promising strategy to investigate liquids and solids in silico.

Graphical abstract

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. R.P. Feynman, Int. J. Theor. Phys. 21, 467 (1982)

    Article  Google Scholar 

  2. D. Frenkel, J.-P. Hansen, Phys. World 9, 35 (1996)

    Article  Google Scholar 

  3. W.F. van Gunsteren, A.E. Mark, J. Chem. Phys. 108, 6109 (1998)

    Article  ADS  Google Scholar 

  4. W.G. Hoover, 50 Years of Computer Simulation -- a Personal View, arXiv:0812.2086v2 (2008)

  5. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)

  6. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Elsevier, 2001)

  7. M. Praprotnik, L. Delle Site, K. Kremer, Annu. Rev. Phys. Chem. 59, 545 (2008)

    Article  ADS  Google Scholar 

  8. K. Kremer, Soft and fragile matter non equilibrium dynamics, metastability and flow, in SUSSP Proceedings Vol. 53 (IOP Publishing Ltd., 2000) pp. 145--184

  9. A. Mulero (Editor), Theory and Simulation of Hard-Sphere Fluids and Related Systems (Springer, Berlin, Heidelberg, 2008)

  10. K. Kremer, F. Müller-Plathe, MRS Bull. 26, 205 (2001)

    Article  Google Scholar 

  11. R.E. Caflisch, G. Ceder, K. Kremer, T. Pollock, M. Scheffler, E.G. Wang (Editors), Focus on Novel Materials Discovery, New J. Phys. (IOP, 2013 and 2014)

  12. C. Micheletti, P. Carloni, A. Maritan, Proteins 55, 635 (2004)

    Article  Google Scholar 

  13. W.G. Noid, J. Chem. Phys. 139, 090901 (2013)

    Article  ADS  Google Scholar 

  14. F. Pontiggia, A. Zen, C. Micheletti, Biophys. J. 95, 5901 (2008)

    Article  ADS  Google Scholar 

  15. M. Karplus, J. McCammon, Nature 277, 578 (1979)

    Article  ADS  Google Scholar 

  16. M. Karplus, Acc. Chem. Res. 35, 321 (2002)

    Article  Google Scholar 

  17. A. Pérez, F.J. Luque, M. Orozco, Acc. Chem. Res. 45, 196 (2012)

    Article  Google Scholar 

  18. P. Ballone, Entropy 16, 322 (2014)

    Article  ADS  Google Scholar 

  19. J. Kirkwood, J. Chem. Phys. 3, 300 (1935)

    Article  ADS  Google Scholar 

  20. P. Raiteri, A. Laio, F.L. Gervasio, C. Micheletti, M. Parrinello, J. Phys. Chem. B 110, 3533 (2006)

    Article  Google Scholar 

  21. M.E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford University Press, 2010)

  22. M. Praprotnik, L. Delle Site, K. Kremer, Phys. Rev. E 73, 066701 (2006)

    Article  ADS  Google Scholar 

  23. M. Praprotnik, L. Delle Site, K. Kremer, J. Chem. Phys. 126, 134902 (2007)

    Article  ADS  Google Scholar 

  24. S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. Delle Site, K. Kremer, Phys. Rev. Lett. 108, 170602 (2012)

    Article  ADS  Google Scholar 

  25. P. Español, R. Delgado-Buscalioni, R. Everaers, R. Potestio, D. Donadio, K. Kremer, J. Chem. Phys. 142, 064115 (2015)

    Article  ADS  Google Scholar 

  26. A.C. Fogarty, R. Potestio, K. Kremer, J. Chem. Phys. 142, 195101 (2015)

    Article  ADS  Google Scholar 

  27. A.C. Fogarty, R. Potestio, K. Kremer, Proteins 84, 1902 (2016)

    Article  Google Scholar 

  28. R. Fiorentini, K. Kremer, R. Potestio, A.C. Fogarty, J. Chem. Phys. 146, 244113 (2017)

    Article  ADS  Google Scholar 

  29. T. Tarenzi, V. Calandrini, R. Potestio, A. Giorgetti, P. Carloni, J. Chem. Theory Comput. 13, 5647 (2017)

    Article  Google Scholar 

  30. R. Potestio, S. Fritsch, P. Español, R. Delgado-Buscalioni, K. Kremer, R. Everaers, D. Donadio, Phys. Rev. Lett. 110, 108301 (2013)

    Article  ADS  Google Scholar 

  31. R. Potestio, P. Español, R. Delgado-Buscalioni, R. Everaers, K. Kremer, D. Donadio, Phys. Rev. Lett. 111, 060601 (2013)

    Article  ADS  Google Scholar 

  32. M. Heidari, K. Kremer, R. Cortes-Huerto, R. Potestio, Spatially resolved thermodynamic integration: An efficient method to compute chemical potentials of dense fluids, arXiv:1802.08045, submitted to J. Chem. Theory Comput

  33. K. Kreis, A.C. Fogarty, K. Kremer, R. Potestio, Eur. Phys. J. ST 224, 2289 (2015)

    Article  Google Scholar 

  34. M. Praprotnik, L. Delle Site, K. Kremer, J. Chem. Phys. 123, 224106 (2005)

    Article  ADS  Google Scholar 

  35. J. Zavadlav, R. Podgornik, M. Melo, S. Marrink, M. Praprotnik, Eur. Phys. J. ST 225, 1595 (2016)

    Article  Google Scholar 

  36. K. Kreis, R. Potestio, K. Kremer, A.C. Fogarty, J. Chem. Theory Comput. 12, 4067 (2016)

    Article  Google Scholar 

  37. M. Heidari, R. Cortes-Huerto, D. Donadio, R. Potestio, Eur. Phys. J. ST 225, 1505 (2016)

    Article  Google Scholar 

  38. D. Wolf, P. Keblinski, S.R. Phillpot, J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999)

    Article  ADS  Google Scholar 

  39. C.J. Fennell, J.D. Gezelter, J. Chem. Phys. 124, 234104 (2006)

    Article  ADS  Google Scholar 

  40. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)

    Article  Google Scholar 

  41. L.X. Dang, B.M. Pettitt, J. Phys. Chem. 91, 3349 (1987)

    Article  Google Scholar 

  42. Y. Wu, H.L. Tepper, G.A. Voth, J. Chem. Phys. 124, 024503 (2006)

    Article  ADS  Google Scholar 

  43. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  44. J.D. Halverson, T. Brandes, O. Lenz, A. Arnold, S. Bevc, V. Starchenko, K. Kremer, T. Stuehn, D. Reith, Comput. Phys. Commun. 184, 1129 (2013)

    Article  ADS  Google Scholar 

  45. K. Kreis, A.C. Fogarty, K. Kremer, R. Potestio, Eur. Phys. J. ST 224, 2289 (2015)

    Article  Google Scholar 

  46. J. Kohanoff, Comput. Mater. Sci. 2, 221 (1994)

    Article  Google Scholar 

  47. F. Pavia, W.A. Curtin, Model. Simul. Mater. Sci. Eng. 23, 055002 (2015)

    Article  ADS  Google Scholar 

  48. R. Rudd, J. Broughton, Phys. Status Solidi B: Basic Res. 217, 251 (2000)

    Article  ADS  Google Scholar 

  49. J. Rottler, S. Barsky, M.O. Robbins, Phys. Rev. Lett. 89, 148304 (2002)

    Article  ADS  Google Scholar 

  50. G. Csanyi, T. Albaret, M.C. Payne, A.D. Vita, Phys. Rev. Lett. 93, 175503 (2004)

    Article  ADS  Google Scholar 

  51. D. Jiang, E.A. Carter, Acta Mater. 52, 4801 (2004)

    Article  Google Scholar 

  52. G. Lu, E.B. Tadmor, E. Kaxiras, Phys. Rev. B 73, 024108 (2006)

    Article  ADS  Google Scholar 

  53. D. Frenkel, A.J.C. Ladd, J. Chem. Phys. 81, 3188 (1984)

    Article  ADS  Google Scholar 

  54. J.M. Polson, E. Trizac, S. Pronk, D. Frenkel, J. Chem. Phys. 112, 5339 (2000)

    Article  ADS  Google Scholar 

  55. M.A. van der Hoef, J. Chem. Phys. 113, 8142 (2000)

    Article  ADS  Google Scholar 

  56. C. Vega, E.G. Noya, J. Chem. Phys. 127, 154113 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Open Access funding provided by Max Planck Society.

Author information

Authors and Affiliations

  1. Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany

    Maziar Heidari, Robinson Cortes-Huerto, Kurt Kremer & Raffaello Potestio

  2. Physics Department, University of Trento, via Sommarive, 14 I-38123, Trento, Italy

    Raffaello Potestio

  3. INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123, Trento, Italy

    Raffaello Potestio

Authors
  1. Maziar Heidari
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Robinson Cortes-Huerto
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Kurt Kremer
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Raffaello Potestio
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Raffaello Potestio.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, M., Cortes-Huerto, R., Kremer, K. et al. Concurrent coupling of realistic and ideal models of liquids and solids in Hamiltonian adaptive resolution simulations. Eur. Phys. J. E 41, 64 (2018). https://doi.org/10.1140/epje/i2018-11675-x

Download citation

  • Received: 15 February 2018

  • Accepted: 03 May 2018

  • Published: 23 May 2018

  • DOI: https://doi.org/10.1140/epje/i2018-11675-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Topical issue: Advances in Computational Methods for Soft Matter Systems
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

Advances in Computational Methods for Soft Matter Systems

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature