Skip to main content
Log in

Nonuniversal behaviour of helical two-dimensional three-component turbulence

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The dynamics of two-dimensional three-component (2D3C) flows is relevant to describe the long-time evolution of strongly rotating flows and/or of conducting fluids with a strong mean magnetic field. We show that in the presence of a strong helical forcing, the out-of-plane component ceases to behave as a passive advected quantity and develops a nontrivial dynamics which deeply changes its large-scale properties. We show that a small-scale helicity injection correlates the input on the 2D component with the one on the out-of-plane component. As a result, the third component develops a nontrivial energy transfer. The latter is mediated by homochiral triads, confirming the strong 3D nature of the leading dynamical interactions. In conclusion, we show that the out-of-plane component in a 2D3C flow enjoys strong nonuniversal properties as a function of the degree of mirror symmetry of the small-scale forcing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Cambon, L. Jacquin, J. Fluid Mech. 202, 295 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  2. F. Waleffe, Phys. Fluids A 5, 677 (1993)

    Article  ADS  Google Scholar 

  3. L.M. Smith, F. Waleffe, Phys. Fluids 11, 1608 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Q. Chen, S. Chen, G.L. Eyink, D.D. Holm, J. Fluid Mech. 542, 139 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. P.D. Mininni, A. Alexakis, A. Pouquet, Phys. Fluids 21, 015108 (2009)

    Article  ADS  Google Scholar 

  6. B. Gallet, J. Fluid Mech. 783, 412 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Alexakis, J. Fluid Mech. 769, 46 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. L. Biferale, F. Bonaccorso, I.M. Mazzitelli, M.A.T. van Hinsberg, A.S. Lanotte, S. Musacchio, P. Perlekar, F. Toschi, Phys. Rev. X 6, 041036 (2016)

    Google Scholar 

  9. Sébastien Galtier, Phys. Rev. E 89, 041001 (2014)

    Article  ADS  Google Scholar 

  10. H.K. Moffatt, J. Fluid Mech. 28, 571 (1967)

    Article  ADS  Google Scholar 

  11. A. Alemany, R. Moreau, P.L. Sulem, U. Frisch, J. Mec. 18, 280 (1979)

    ADS  Google Scholar 

  12. O. Zikanov, A. Thess, J. Fluid Mech. 358, 299 (1998)

    Article  ADS  Google Scholar 

  13. B. Gallet, C.R. Doering, J. Fluid Mech. 773, 154 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Alexandros Alexakis, Phys. Rev. E 84, 056330 (2011)

    Article  ADS  Google Scholar 

  15. Barbara Bigot, Sébastien Galtier, Phys. Rev. E 83, 026405 (2011)

    Article  ADS  Google Scholar 

  16. Leslie M. Smith, Fabian Waleffe, Phys. Fluids 11, 1608 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Falkovich, K. Gawedzki, M. Vergassola, Rev. Mod. Phys. 73, 913 (2001)

    Article  ADS  Google Scholar 

  18. L. Biferale, M. Buzzicotti, M. Linkmann, Phys. Fluids 29, 111101 (2017)

    Article  ADS  Google Scholar 

  19. H.K. Moffatt, J. Fluid Mech. 741, R3 (2014)

    Article  ADS  Google Scholar 

  20. P.D. Mininni, A. Pouquet, Phys. Rev. E 79, 026304 (2009)

    Article  ADS  Google Scholar 

  21. T. Teitelbaum, P.D. Mininni, Phys. Rev. Lett. 103, 014501 (2009)

    Article  ADS  Google Scholar 

  22. P.D. Mininni, A. Pouquet, Phys. Fluids 22, 035105 (2010)

    Article  ADS  Google Scholar 

  23. P.D. Mininni, A. Pouquet, Phys. Fluids 22, 035106 (2010)

    Article  ADS  Google Scholar 

  24. V. Dallas, S.M. Tobias, J. Fluid Mech. 798, 682 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. L. Biferale, S. Musacchio, F. Toschi, Phys. Rev. Lett. 108, 164501 (2012)

    Article  ADS  Google Scholar 

  26. L. Biferale, S. Musacchio, F. Toschi, J. Fluid Mech. 730, 309 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. P. Constantin, A. Majda, Commun. Math. Phys. 115, 435 (1988)

    Article  ADS  Google Scholar 

  28. F. Waleffe, Phys. Fluids A 4, 350 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  29. Antonio Celani, Massimo Cencini, Andrea Mazzino, Massimo Vergassola, New J. Phys. 6, 72 (2004)

    Article  Google Scholar 

  30. R.H. Kraichnan, Phys. Fluids 10, 1417 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  31. D.K. Lilly, Phys. Fluids 12, II--240 (1969)

    Article  Google Scholar 

  32. J. Sommeria, J. Fluid Mech. 170, 139 (1986)

    Article  ADS  Google Scholar 

  33. T. Gotoh, Phys. Rev. E 57, 2984 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Paret, P. Tabeling, Phys. Fluids 10, 3126 (1998)

    Article  ADS  Google Scholar 

  35. G. Boffetta, R.E. Ecke, Annu. Rev. Fluid Mech. 44, 427 (2012)

    Article  ADS  Google Scholar 

  36. Alexandros Alexakis, J. Fluid Mech. 812, 752 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. Michele Buzzicotti, Hussein Aluie, Luca Biferale, Moritz Linkmann, Energy transfer in turbulence under rotation, arXiv preprint:1711.07054 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Linkmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linkmann, M., Buzzicotti, M. & Biferale, L. Nonuniversal behaviour of helical two-dimensional three-component turbulence. Eur. Phys. J. E 41, 4 (2018). https://doi.org/10.1140/epje/i2018-11612-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11612-1

Keywords

Navigation