Advertisement

A unified description of colloidal thermophoresis

  • Jérôme Burelbach
  • Daan Frenkel
  • Ignacio Pagonabarraga
  • Erika Eiser
Open Access
Colloquium
Part of the following topical collections:
  1. Non-equilibrium processes in multicomponent and multiphase media

Abstract.

We use the dynamic length and time scale separation in suspensions to formulate a general description of colloidal thermophoresis. Our approach allows an unambiguous definition of separate contributions to the colloidal flux and clarifies the physical mechanisms behind non-equilibrium motion of colloids. In particular, we derive an expression for the interfacial force density that drives single-particle thermophoresis in non-ideal fluids. The issuing relations for the transport coefficients explicitly show that interfacial thermophoresis has a hydrodynamic character that cannot be explained by a purely thermodynamic consideration. Our treatment generalises the results from other existing approaches, giving them a clear interpretation within the framework of non-equilibrium thermodynamics.

Graphical abstract

Keywords

Topical issue: Non-equilibrium processes in multicomponent and multiphase media 

References

  1. 1.
    C. Ludwig, Sitzber. Akad. Wiss. Wien, Math.-Nat. Wiss. Kl. 20, 539 (1856)Google Scholar
  2. 2.
    C. Soret, Arch. Sci. Phys. Nat. Genève 2, 48 (1879)Google Scholar
  3. 3.
    S.A. Putnam, D.G. Cahill, Langmuir 21, 5317 (2005)CrossRefGoogle Scholar
  4. 4.
    S. Duhr, D. Braun, Proc. Natl. Acad. Sci. U.S.A. 103, 19678 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    S. Iacopini, R. Rusconi, R. Piazza, Eur. Phys. J. E 19, 59 (2006)CrossRefGoogle Scholar
  6. 6.
    M. Braibanti, D. Vigolo, R. Piazza, Phys. Rev. Lett. 100, 108303 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    S. Duhr, D. Braun, Phys. Rev. Lett. 96, 168301 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    J.K.G. Dhont, S. Wiegand, S. Duhr, D. Braun, Langmuir 23, 1674 (2007)CrossRefGoogle Scholar
  9. 9.
    R. Piazza, A. Guarino, Phys. Rev. Lett. 88, 208302 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    R. Piazza, Philos. Mag. 83, 2067 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    M.E. Schimpf, J.C. Giddings, Macromolecules 20, 1561 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    K.J. Zhang, M.E. Briggs, R.W. Gammon, J.V. Sengers, J.F. Douglas, J. Chem. Phys. 111, 2270 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    S. Duhr, S. Arduini, D. Braun, Eur. Phys. J. E 15, 277 (2004)CrossRefGoogle Scholar
  14. 14.
    D. Braun, A. Libchaber, Phys. Rev. Lett. 89, 188103 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    S.J. Jeon, M.E. Schimpf, A. Nyborg, Anal. Chem. 69, 3442 (1997)CrossRefGoogle Scholar
  16. 16.
    S. Duhr, D. Braun, Phys. Rev. Lett. 97, 038103 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    A. Würger, Eur. Phys. J. E 37, 96 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Demirel, S.I. Sandler, Int. J. Heat Mass Transfer 44, 2439 (2001)CrossRefGoogle Scholar
  19. 19.
    J.K.G. Dhont, W.J. Briels, Eur. Phys. J. E 25, 61 (2008)CrossRefGoogle Scholar
  20. 20.
    J.K.G. Dhont, J. Chem. Phys. 120, 1632 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    A. Parola, R. Piazza, Eur. Phys. J. E 15, 255 (2004)CrossRefGoogle Scholar
  22. 22.
    R. Piazza, A. Parola, J. Phys.: Condens. Matter 20, 153102 (2008)ADSGoogle Scholar
  23. 23.
    A. Würger, Rep. Prog. Phys. 73, 126601 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    S. de Groot, P. Mazur, Non-equilibrium Thermodynamics (North-Holland, 1969)Google Scholar
  25. 25.
    E. Ruckenstein, J. Colloid Interface Sci. 83, 77 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    A. Würger, J. Phys.: Condens. Matter 26, 035105 (2014)Google Scholar
  27. 27.
    A. Würger, C. R. Mec. 341, 438 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    S. Fayolle, T. Bickel, A. Würger, Phys. Rev. E 77, 041404 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    L. Onsager, Phys. Rev. Lett. 37, 405 (1931)ADSGoogle Scholar
  30. 30.
    L. Onsager, Phys. Rev. Lett. 38, 2265 (1931)ADSGoogle Scholar
  31. 31.
    J.F. Brady, J. Fluid Mech. 667, 216 (2011)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    R. van Roij, M. Dijkstra, J.-P. Hansen, Phys. Rev. E 59, 2010 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    B.U. Felderhof, J. Chem. Phys. 118, 11326 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    S. Kjelstrup, D. Bedeaux, Ser. Adv. Stat. Mech. 16, 73 (2008)Google Scholar
  35. 35.
    J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    J.N. Agar, C.Y. Mou, J.L. Lin, J. Phys. Chem. 93, 2079 (1989)CrossRefGoogle Scholar
  37. 37.
    J. Morthomas, A. Würger, Eur. Phys. J. E 27, 425 (2008)CrossRefGoogle Scholar
  38. 38.
    B. Derjaguin, N. Churaev, V. Muller, Surface Forces (Springer, New York, 1987)Google Scholar
  39. 39.
    J. Dorfman, T. Kirkpatrick, J. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    J. Rubí, P. Mazur, Physica A 250, 253 (1998) arXiv:9706077 [cond-mat]ADSCrossRefGoogle Scholar
  41. 41.
    T. Murphy, J. Aguirre, J. Chem. Phys. 57, 2098 (1972)ADSCrossRefGoogle Scholar
  42. 42.
    J.K.G. Dhont, J. Chem. Phys. 120, 1642 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    G.K. Batchelor, J. Fluid Mech. 74, 1 (1976)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    A. Majee, A. Würger, Phys. Rev. E 83, 061403 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    P. Debye, E. Hückel, Phys. Z. 24, 185 (1923)Google Scholar
  46. 46.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media Vol. 8 (Pergamon Press, 1960) pp. 47--52Google Scholar
  47. 47.
    S. Fayolle, T. Bickel, S. Le Boiteux, A. Würger, Phys. Rev. Lett. 95, 208301 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    E. Bringuier, A. Bourdon, Phys. Rev. E 67, 011404 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    A. Würger, Europhys. Lett. 74, 658 (2006)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Jérôme Burelbach
    • 1
  • Daan Frenkel
    • 2
  • Ignacio Pagonabarraga
    • 3
    • 4
    • 5
  • Erika Eiser
    • 1
  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK
  2. 2.Department of ChemistryUniversity of CambridgeCambridgeUK
  3. 3.Departament de Física de la Matèria CondensadaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Institute of Complex Systems (UBICS)Universitat de BarcelonaBarcelonaSpain
  5. 5.CECAM Centre Européen de Calcul Atomique et MoléculaireÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations