Skip to main content
Log in

Dynamical heterogeneities and mechanical non-linearities: Modeling the onset of plasticity in polymer in the glass transition

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this paper we focus on the role of dynamical heterogeneities on the non-linear response of polymers in the glass transition domain. We start from a simple coarse-grained model that assumes a random distribution of the initial local relaxation times and that quantitatively describes the linear viscoelasticity of a polymer in the glass transition regime. We extend this model to non-linear mechanics assuming a local Eyring stress dependence of the relaxation times. Implementing the model in a finite element mechanics code, we derive the mechanical properties and the local mechanical fields at the beginning of the non-linear regime. The model predicts a narrowing of distribution of relaxation times and the storage of a part of the mechanical energy --internal stress-- transferred to the material during stretching in this temperature range. We show that the stress field is not spatially correlated under and after loading and follows a Gaussian distribution. In addition the strain field exhibits shear bands, but the strain distribution is narrow. Hence, most of the mechanical quantities can be calculated analytically, in a very good approximation, with the simple assumption that the strain rate is constant.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Tracht, M. Wilhelm, A. Heuer, H.W. Spiess, J. Magn. Reson. 140, 460 (1999)

    Article  ADS  Google Scholar 

  2. M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)

    Article  ADS  Google Scholar 

  3. D. Long, F. Lequeux, Eur. Phys. J. E 4, 371 (2002)

    Article  Google Scholar 

  4. S. Merabia, D. Long, Eur. Phys. J. E 9, 195 (2002)

    Article  Google Scholar 

  5. S. Merabia, P. Sotta, D. Long, Eur. Phys. J. E 15, 189 (2004)

    Article  Google Scholar 

  6. S. Merabia, D. Long, J. Chem. Phys. 125, 234901 (2006)

    Article  ADS  Google Scholar 

  7. A. Dequidt, D. Long, P. Sotta, O. Sanséau, Eur. Phys. J. E 35, 61 (2012)

    Article  Google Scholar 

  8. R.J. Masurel, S. Cantournet, A. Dequidt, D. Long, H. Montes, F. Lequeux, Macromolecules 48, 6690 (2015)

    Article  ADS  Google Scholar 

  9. N.B. Tito, J.E.G. Lipson, S.T. Milner, Soft Matter 9, 3173 (2013)

    Article  ADS  Google Scholar 

  10. J.E.G. Lipson, S.T. Milner, Eur. Phys. J. B 72, 133 (2009)

    Article  ADS  Google Scholar 

  11. R.J. Masurel, P. Gelineau, D.R. Long, A. Dequidt, S. Cantournet, F. Lequeux, H. Montes, Phys. Rev. Lett. 118, 047801 (2017)

    Article  ADS  Google Scholar 

  12. Y. Nanzai, Prog. Polym. Sci. 18, 437 (1993)

    Article  Google Scholar 

  13. L.S. Loo, R.E. Cohen, K.K. Gleason, Science 288, 116 (2000)

    Article  ADS  Google Scholar 

  14. R. Pérez-Aparicio, D. Cottinet, C. Crauste-Thibierge, L. Vanel, P. Sotta, J.Y. Delannoy, D.R. Long, S. Ciliberto, Macromolecules 49, 3889 (2016)

    Article  ADS  Google Scholar 

  15. J. Kalfus, A. Detwiler, A.J. Lesser, Macromolecules 45, 4839 (2012)

    Article  ADS  Google Scholar 

  16. H.N. Lee, R.A. Riggleman, J.J. de Pablo, M.D. Ediger, Macromolecules 42, 4328 (2009)

    Article  ADS  Google Scholar 

  17. B. Bending, K. Christison, J. Ricci, M.D. Ediger, Macromolecules 47, 800 (2014)

    Article  ADS  Google Scholar 

  18. H.N. Lee, K. Paeng, S.F. Swallen, M.D. Ediger, Science 323, 231 (2009)

    Article  Google Scholar 

  19. R.A. Riggleman, H.N. Lee, M.D. Ediger, J.J. de Pablo, Soft Matter 6, 287 (2010)

    Article  ADS  Google Scholar 

  20. H.N. Lee, K. Paeng, S.F. Swallen, M.D. Ediger, J. Chem. Phys. 128, 134902 (2008)

    Article  ADS  Google Scholar 

  21. O.B. Salamatina, S.N. Rudnev, V.V. Voenniy, E.F. Oleynik, J. Therm. Anal. 38, 1271 (1992)

    Article  Google Scholar 

  22. O.A. Hasan, M.C. Boyce, Polymer 34, 5085 (1993)

    Article  Google Scholar 

  23. Y. Nanzai, J. Non-Cryst. Solids 307--310, 481 (2002)

    Article  ADS  Google Scholar 

  24. M.C. Boyce, E.L. Montagut, A.S. Argon, Polym. Eng. Sci. 32, 1073 (1992)

    Article  Google Scholar 

  25. O.A. Hasan, M.C. Boyce, Polym. Eng. Sci. 35, 331 (1995)

    Article  Google Scholar 

  26. E. Kontou, G. Spathis, Polym. Eng. Sci. 38, 1443 (1998)

    Article  Google Scholar 

  27. G. Spathis, Mater. Sci. 43, 7192 (2008)

    Article  ADS  Google Scholar 

  28. T.D. Nguyen, J.H. Qi, H.F. Castro, K.N.A. Long, J. Mech. Phys. Solids 56, 2792 (2008)

    Article  ADS  Google Scholar 

  29. H. Eyring, J. Chem. Phys. 4, 283 (1936)

    Article  ADS  Google Scholar 

  30. T. Ree, H. Eyring, J. Appl. Phys. 26, 800 (1995)

    Article  ADS  Google Scholar 

  31. D.D. Rodney, A. Tanguy, D. Vandembroucq, Model. Simul. Mater. Sci. Eng. 19, 083001 (2011)

    Article  ADS  Google Scholar 

  32. P. Sollich, F. Lequeux, P. Hebraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)

    Article  ADS  Google Scholar 

  33. F. Lequeux, A. Ajdari, Phys. Rev. E 63, 030502 (2001)

    Article  ADS  Google Scholar 

  34. R. Radhakrishnan, S.M. Fielding, Phys. Rev. Lett. 117, 188001 (2016)

    Article  ADS  Google Scholar 

  35. G.A. Medvedev, J.M. Caruthers, J. Rheol. 57, 949 (2013)

    Article  ADS  Google Scholar 

  36. A. Dequidt, L. Conca, J.Y. Delannoy, P. Sotta, F. Lequeux, D.R. Long, Macromolecules 49, 9148 (2016)

    Article  ADS  Google Scholar 

  37. M.C. Boyce, D.M. Parks, A.S. Argon, Mech. Mater. 7, 15 (1988)

    Article  Google Scholar 

  38. L.E. Govaert, P.H.M. Timmermans, W.A. Brkelmans, J. Eng. Mater. Technol. 122, 177 (2000)

    Article  Google Scholar 

  39. E.T.J. Klompen, T.A.P. Engels, L.E. Govaert, H.E.H. Meijer, Macromolecules 38, 6997 (2005)

    Article  ADS  Google Scholar 

  40. J. Rottler, M.O. Robbins, Phys. Rev. Lett. 95, 225504 (2005)

    Article  ADS  Google Scholar 

  41. R. Quinson, J. Perez, M. Rink, A. Pavan, J. Mater. Sci. 32, 1371 (1997)

    Article  ADS  Google Scholar 

  42. J.L. Halary, F. Laupretre, L. Monnerie, Polymer Materials: Macroscopic Properties and Molecular Interpretations (John Wiley & Sons, 2011)

  43. Z-set: http://www.zset-software.com/

  44. D. Ryckelynck, F. Vincent, S. Cantournet, Comput. Methods Appl. Mech. Eng. 225, 28 (2012)

    Article  ADS  Google Scholar 

  45. T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Int. J. Solids Struct. 40, 3647 (2003)

    Article  Google Scholar 

  46. I.M. Ward, Mechanical Properties of Solid Polymers, 2nd edition (John Wiley, 1983)

  47. A.V. Lyulin, N.K. Balabaev, A.M.A. Mazo, M.A. Michels, Macromolecules 37, 8785 (2004)

    Article  ADS  Google Scholar 

  48. J. Li, T. Mulder, B. Vorselaars, A.V. Lyulin, M.A.J. Michels, Macromolecules 39, 7774 (2006)

    Article  ADS  Google Scholar 

  49. N.K. Balabaev, M.A. Mazo, A. Lyulin, E.F. Oleinik, Polym. Sci. Ser. A 52, 633 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Montes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masurel, R.J., Gelineau, P., Lequeux, F. et al. Dynamical heterogeneities and mechanical non-linearities: Modeling the onset of plasticity in polymer in the glass transition. Eur. Phys. J. E 40, 116 (2017). https://doi.org/10.1140/epje/i2017-11606-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11606-5

Keywords

Navigation