Active force maintains the stability of a contractile ring

  • Stanard Mebwe Pachong
  • Kristian K. Müller-Nedebock
Regular Article
  • 86 Downloads

Abstract.

We investigate a system of sufficiently dense polar actin filaments considered rigid and cross-linked by dimer myosin II protein within the contractile ring. The Langevin dynamics of this system is cast in a functional integral formalism and then transformed into density variables. Using the dynamical Random Phase Approximation (RPA) along with the a one-dimensional Langevin dynamics simulation (LDS), we investigate the structural integrity of the actin bundle network. The active force and the networking force reveal a non-trivial diffusive behaviour of the filaments within the ring. We conclude on when the active and networking forces lead to the contractile ring breaking down. The non-equilibrium active force is predominantly responsible for the prevention of the gaps in the ring.

Graphical abstract

Keywords

Living systems: Biological networks 

Supplementary material

10189_2017_11581_MOESM1_ESM.mp4 (1.9 mb)
Supplementary material

References

  1. 1.
    D. Marcland, J.V. Landau, J. Exp. Zool. 125, 507 (1954)CrossRefGoogle Scholar
  2. 2.
    T.D. Pollard, Biochem. Soc. 36, 425 (2008)CrossRefGoogle Scholar
  3. 3.
    T.E. Schroeder, J. Cell Biol. 53, 419 (1972)CrossRefGoogle Scholar
  4. 4.
    H.E. Huxley, Eur. J. Biochem. 271, 1403 (2004)CrossRefGoogle Scholar
  5. 5.
    M. Mavrakis, Y. Azou-Gros, F.-G. Tsai, J. Alvarado, A. Bertin, F. Iv, A. Kress, S. Brasselet, G.H. Koenderink, T. Lecuit, Nat. Cell Biol. 16, 322 (2014)CrossRefGoogle Scholar
  6. 6.
    D. Biron, E. Alvarez-Lacalle, T. Tlusty, E. Moses, Phys. Rev. Lett. 95, 098102 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    K. Kruse, F. Jülicher, Phys. Rev. Lett. 85, 1778 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    K. Kruse, F. Jülicher, Phys. Rev. E 67, 051913 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    A.L. Miller, Curr. Biol. 21, 976 (2011)CrossRefGoogle Scholar
  10. 10.
    J.C. Canman, W.A. Wells, J. Cell Biol. 166, 22 (2004)CrossRefGoogle Scholar
  11. 11.
    M. Lenz, M.L. Gardel, A.R. Dinner, New J. Phys. 14, 033037 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    P.C. Martin, E.D. Siggia, H.A. Rose, Phys. Rev. A 8, 423 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    G.H. Fredrickson, E. Helfand, J. Chem. Phys. 93, 2048 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    B. Jouvet, R. Phythian, Phys. Rev. A. 19, 1350 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    R.V. Jensen, J. Stat. Phys. 25, 183 (1981)ADSCrossRefGoogle Scholar
  16. 16.
    N. Grønbech-Jensen, O. Farago, Mol. Phys. 111, 983 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    M. Takaine, O. Numata, K. Nakano, J. Cell Sci. 128, 2903 (2015)CrossRefGoogle Scholar
  18. 18.
    T. Kamasaki, M. Osumi, I. Mabuchi, J. Cell Biol. 178, 765 (2007)CrossRefGoogle Scholar
  19. 19.
    V. Wollrab, R. Thiagarajan, A. Wald, K. Kruse, D. Riveline, Nat. Commun. 7, 11860 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    A. Carvalho, A. Desai, K. Oegema, Cell 137, 926 (2009)CrossRefGoogle Scholar
  21. 21.
    K. Kruse, A. Zumdieck, F. Jülicher, Europhys. Lett. 64, 716 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    M. Lenz, T. Thoresen, M.L. Gardel, A.R. Dinner, Phys. Rev. Lett. 108, 238107 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    K.K. Müller-Nedebock, T.A. Vilgis, Macromolecules 31, 5898 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    K.K. Müller-Nedebock, T.A. Vilgis, J. Chem. Phys. 110, 4651 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    M. Castelnovo, F. Joanny, Eur. Phys. J. E 6, 377 (2001)CrossRefGoogle Scholar
  26. 26.
    M. Mateyisi, Particle diffusion in elastically coupled narrow parallel channels, PhD Thesis, Stellenbosch University (2014)Google Scholar
  27. 27.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 1996) pp. 63--107Google Scholar
  28. 28.
    M.P. Allen, D.T. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1989) pp. 38--42, 71--108Google Scholar
  29. 29.
    M.P. Allen, Introduction to Molecular Dynamics Simulation, Vol. 23 (John von Neumann-Institut für Computing (NIC), Jülich, 2004)Google Scholar
  30. 30.
    N. Goga, A.J. Rzepiela, A.H. de Vries, S.J. Marrink, H.J.C. Berendsen, J. Chem. Theory Comput. 8, 3637 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates Publishers, Sunderland, Mass., 2001) pp. 229--231Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Stanard Mebwe Pachong
    • 1
  • Kristian K. Müller-Nedebock
    • 1
    • 2
  1. 1.Institute of Theoretical Physics, Department of PhysicsStellenbosch UniversityStellenboschSouth Africa
  2. 2.National Institute for Theoretical PhysicsStellenboschSouth Africa

Personalised recommendations