Skip to main content
Log in

The equation of state of polymers. Part III: Relation with the compensation law

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The properties of amorphous polymers and of organic compounds under pressure are interpreted in the framework of the modified Van der Walls Equation of State (mVW-EOS) the Vogel-Fulcher-Tamann (VFT) law and of the compensation law. We have shown recently that polymers and organic compounds in amorphous liquid and crystalline states verify the mVW-EOS which depends on three parameters, \(P^{\ast}\) \(V^{\ast}\) and \(T^{\ast}\). In this paper we compare the characteristic pressure \(P^{\ast}\) of the mVW-EOS to the various pressures \(P_{X}= \Delta H_{X}/\Delta V_{X}\) deduced from thermodynamic and kinetic properties of polymers in the liquid and solid states. \(\Delta H_{X}\) and \(\Delta V_{X}\) are: a) the enthalpy and volume change at the melting and glass transitions (the glass being isotropic or oriented and annealed below \(T_{g}\) at various aging conditions); b) the activation parameters of individual \(\beta\) and cooperative \(\alpha\) motions in crystalline liquid and amorphous polymers studied by dielectric or mechanical spectroscopy; and c) the activation parameters of amorphous (solid and liquid) polymers submitted to a deformation depending on the time frequency temperature and strain rate. For a same material, whatever its state and whatever the experimental properties analyzed (dielectric and mechanical relaxation, viscosity, auto-diffusion, yielding under hydrostatic pressure), we demonstrate that \(P_{X}=P^{\ast}=1/\gamma\kappa\), (\(\gamma\) Grüneisen parameter, \(\kappa\) compressibility). In all polymers and organic compounds (and water), these pressures, weakly dependent on T and P near \(T_{g}\) and \( T_{m}\) at low pressure are characteristic of the H-H inter-molecular interactions. It is shown that the two empirical Lawson and Keyes relations of the compensation law can be deduced from the mVW-EOS.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Rault, Eur. Phys. J. E 37, 113 (2014)

    Article  Google Scholar 

  2. J. Rault, Eur. Phys. J. E 38, 91 (2015)

    Article  ADS  Google Scholar 

  3. E. Brosh, G. Makov, R.Z. Shneck, J. Phys.: Condens. Matter 15, 2991 (2003)

    ADS  Google Scholar 

  4. J.H. Rose, J. Smith, F. Guinea, J. Ferrante, Phys. Rev. B 29, 2963 (1984)

    Article  ADS  Google Scholar 

  5. V.G. Baonza, M. Céceres, J. Nünez, Phys. Rev. B 51, 28 (1995)

    Article  ADS  Google Scholar 

  6. M. Taravillo, M. Baonza, V.G. Nunez, M. Caceres, High Temp. High Pressure 30, 97 (1998)

    Article  Google Scholar 

  7. J. Rault, Eur. Phys. J. E 35, 26 (2012)

    Article  Google Scholar 

  8. J.C. Slater, Introduction to Chemical Physics (McGraw-Hill, New York, 1939)

  9. T.H.K. Barron, G.K. White, Heat Capacity and Thermal Expansion at Low Pressure (Kluker Academic, New York, 1999)

  10. W. Meyer, H. Neldel, Z. Tech. Phys. 12, 588 (1937)

    Google Scholar 

  11. R.W. Keyes, J. Chem. Phys. 29, 467 (1958)

    Article  ADS  Google Scholar 

  12. A.W. Lawson, J. Phys. Solids 3, 250 (1957)

    Article  ADS  Google Scholar 

  13. A.W. Lawson, J. Chem. Phys. 32, 131 (1960)

    Article  ADS  Google Scholar 

  14. A. Yelon, B. Movagha, Phys. Rev. Lett. 65, 618 (1960)

    Article  ADS  Google Scholar 

  15. A. Yelon, B. Movagha, H.M. Branz, Phys. Rev. B 46, 12244 (1992)

    Article  ADS  Google Scholar 

  16. E. Peacock-Lopez, H. Suhl, Phys. Rev. B 26, 3774 (1982)

    Article  ADS  Google Scholar 

  17. K.L. Ngai, Solid State Ionics 105, 23 (1998)

    Google Scholar 

  18. K.F. Freed, J. Phys. Chem. B 115, 1689 (2011)

    Article  Google Scholar 

  19. L. Liu, Q.-X. Guo, Chem. Rev. 101, 673 (2001)

    Article  Google Scholar 

  20. T. Psurek, C.L. Soles, K.A. Page, M.T. Marcus, T. Cicerone, J.F. Douglas, J. Phys. Chem. B 112, 15980 (2008)

    Article  Google Scholar 

  21. A. Anopchenko, T. Psurek, V. VanderHart, J.F. Douglas, J. Obbrzut, Phys. Rev. E 74, 031501 (2006)

    Article  ADS  Google Scholar 

  22. Y. Hiki, H. Takahashi, H. Kobayashi, Solid State Ionics 53-56, 1157 (1992)

    Article  Google Scholar 

  23. Y. Hiki, J. Non-Cryst. Solids 357, 357 (2011)

    Article  ADS  Google Scholar 

  24. Y. Adda, J. Philibert, La diffusion dans les solides (Presses Universitaires, 1966)

  25. J. Philibert, Trans. Tech. Publ. 249, 61 (2006)

    Google Scholar 

  26. J. Rault, J. Non-Cryst. Solids 235-237, 737 (1998)

    Article  ADS  Google Scholar 

  27. A.L. Kovarskii, High-Pressure Chemistry and Physics of Polymers (CRC Press, Boca Raton, 1993)

  28. J.E. Mark (Editor), Physical Properties of Polymers Handbook (AIP Press, NY, 1995)

  29. P. Zoller, J. Polym. Sci.: Polym. Phys. 16, 1261 (1978)

    ADS  Google Scholar 

  30. Kell Whalley, J. Chem. Phys. 62, 1063 (2008)

    Google Scholar 

  31. J. Shanker, M. Kumar, Phys. Status Solidi B 179, 351 (1993)

    Article  ADS  Google Scholar 

  32. T. Uchida, Y. Wang, M.L. Rivers, S.R. Sutton, J. Geophys. Res. B 106, 21799 (2001)

    Article  ADS  Google Scholar 

  33. F.H. Fisher, O.E. Dial, Equation of State of Pure and Sea Water, Rep. SIO reference 75-28

  34. J. Rault, Physical Aging of Glasses: the VFT approach (Nova Science Publishers, New York, 2009)

  35. D.W. Van Krevelen, Properties of Polymers (Elsevier, Amsterdam, 1990)

  36. J.I. Berg, R. Simha, J. Non-Cryst. Solids 22, 1 (1976)

    Article  ADS  Google Scholar 

  37. E. Donth, The Glass Transition (Springer, Berlin, 2001)

  38. R. Keller, W.B. Holzapfel, H. Schulz, Phys. Rev. 16, 1403 (1977)

    Article  Google Scholar 

  39. H. Liu, L. Wang, X. Xiao, F. De Carlo, J. Feng, H. Mao, R. Hemley, Proc. Natl. Acad. Sci. U.S.A. 105, 13229 (2008)

    Article  ADS  Google Scholar 

  40. A. Drozd-Rzoska, S.J. Rzoska, A.R. Imre, J. Non-Cryst. Solids 353, 3915 (2007)

    Article  ADS  Google Scholar 

  41. D. Fragiadakis, M.C. Roland, J. Phys. Rev. E 83, 031504 (2011)

    Article  ADS  Google Scholar 

  42. J.P. Poirier, Geophys. J. 92, 99 (1988)

    Article  ADS  Google Scholar 

  43. J. Rault, J. Phys.: Condens. Matter 15, S 1193 (2003)

    ADS  Google Scholar 

  44. J. Rault, J. Non-Cryst. Solids 357, 339 (2011)

    Article  ADS  Google Scholar 

  45. J. Rault, J. Non-Cryst. Solids 352, 4946 (2006)

    Article  ADS  Google Scholar 

  46. N.H. Nachtrieb, Adv. Phys. 16, 309 (1967)

    Article  ADS  Google Scholar 

  47. V.A. Bershtein, V.M. Egorov, Differential Scanning Calorimetry of Polymers (Ellis Horwoood, Chischester, UK, 1994)

  48. E. Donth, The Glass Transition (Springer, Berlin, 2001)

  49. C. Bauwens-Crozet, J.C. Bauwens, Polymer 23, 1599 (1982)

    Article  Google Scholar 

  50. G. Adam, A. Cross, R.N.J. Haward, J. Mat. Sci. 10, 1582 (1975)

    Article  ADS  Google Scholar 

  51. W.D. Cook, M. Mehrabi, G.H. Edward, Polymer 40, 1209 (1990)

    Article  Google Scholar 

  52. C. Bauwens-Crozet, J.C. Bauwens, G. Homes, J. Polym. Sci. 7, A-2 (1969)

    Google Scholar 

  53. E. Pink, H. Bouda, B.H. Bäck, Mater. Sci. Eng. 38, 89 (1979)

    Article  Google Scholar 

  54. F. Povolo, G. Schwartz, E.B. Hermida, J. Appl. Polym. Sci. 61, 109 (1996)

    Article  Google Scholar 

  55. Y. Nanzai, Prog. Polym. Sci. 18, 437 (1993)

    Article  Google Scholar 

  56. Y. Nanzai, N. Nakayama, J. Non-Cryst. Solids 172-174, 771 (1994)

    Article  ADS  Google Scholar 

  57. Y. Nanzai, ISME Int. J. A 37, 149 (1994)

    Google Scholar 

  58. Y. Nanzai, T. Yamasaki, S. Yoshioka, ISME Int. J. A 41, 31 (1998)

    Article  Google Scholar 

  59. J.M. Lefebre, B. Escaig, J. Mater. Sci. 20, 438 (1985)

    Article  ADS  Google Scholar 

  60. H.W. Zhang, G. Subhash, X.N. Jing, L.J. Kecskes, R.J. Dowding, Philos. Mag. Lett. 86, 333 (2006)

    Article  ADS  Google Scholar 

  61. R.N. Haward, The Physics of Glassy Polymers (Applied Science Publishers Ltd, London, 1973)

  62. S. Rabinowitz, I.M. Ward, J.S.C. Parry, J. Mater. Sci. 5, 29 (1970)

    Article  ADS  Google Scholar 

  63. J.A. Sauer, D.R. Mears, K.D. Pae, J. Mater. Sci. 24, 451 (1970)

    Google Scholar 

  64. K.I. Tsirule, E.L. Tyunina, in High Pressure and Physics of Polymers, edited by A.L. Kovarskii (CRC Press, Boca Raton, US, 1994).

  65. C.P.R. Hoppel, T.A. Bogetti, W. Gillepie, J. Therm. Comput. Mater. 8, 375 (1995)

    Article  Google Scholar 

  66. W.A. Spitzig, O. Richmond, Polym. Eng. Sci. 19, 1129 (1979)

    Article  Google Scholar 

  67. J.O. Chua, A.L. Ruoff, J. Appl. Phys. 46, 4659 (1975)

    Article  ADS  Google Scholar 

  68. H.B. Yu, K. Samwer, Y. Wu, W.H. Wang, Phys. Rev. Lett. 109, 095508 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Rault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rault, J. The equation of state of polymers. Part III: Relation with the compensation law. Eur. Phys. J. E 40, 82 (2017). https://doi.org/10.1140/epje/i2017-11565-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11565-9

Keywords

Navigation