Skip to main content
Log in

Formation of brine channels in sea ice

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Liquid salty micro-channels (brine) between growing ice platelets in sea ice are an important habitat for CO2-binding microalgaea with great impact on polar ecosystems. The structure formation of ice platelets is microscopically described and a phase field model is developed. The pattern formation during solidification of the two-dimensional interstitial liquid is considered by two coupled order parameters, the tetrahedricity as structure of ice and the salinity. The coupling and time evolution of these order parameters are described by a consistent set of three model parameters. They determine the velocity of the freezing process and the structure formation, the phase diagram, the super-cooling and super-heating region, and the specific heat. The model is used to calculate the short-time frozen micro-structures. The obtained morphological structure is compared with the vertical brine pore space obtained from X-ray computed tomography.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. Worster, J.S. Wettlaufer, J. Phys. Chem. B 101, 6132 (1997)

    Article  Google Scholar 

  2. D.L. Feltham, N. Untersteiner, J.S. Wettlaufer, M.G. Worster, Geophys. Res. Lett. 33, L14501 (2006)

    Article  ADS  Google Scholar 

  3. S.F. Ackley, C.W. Sullivan, Deep-Sea Res. I 41, 1583 (1994)

    Article  Google Scholar 

  4. I. Werner, J. Ikävalko, H. Schünemann, Polar Biol. 30, 1493 (2007)

    Article  Google Scholar 

  5. W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers, N. Y. Acta Metall. 1, 428 (1953)

    Article  Google Scholar 

  6. B. Chalmers, Principles of Solidification (John Wiley & Sons, New York, 1964)

  7. G. Quincke, Proc. R. Soc. London 76, 431 (1905)

    Article  ADS  Google Scholar 

  8. K. Binder, Rep. Prog. Phys. 50, 783 (1987)

    Article  ADS  Google Scholar 

  9. K.M. Golden, S.F. Ackley, V.I. Lytle, Science 282, 2238 (1998)

    Article  ADS  Google Scholar 

  10. K.M. Golden, A.L. Heaton, H. Eicken, V.I. Lytle, Mech. Mater. 38, 801 (2006)

    Article  Google Scholar 

  11. K.M. Golden, H. Eicken, A.L. Heaton, J. Miner, D.J. Pringle, J. Zhu, Geophys. Res. Lett. 34, 16501 (2007)

    Article  ADS  Google Scholar 

  12. J.S. Wettlaufer, Europhys. Lett. 19, 337 (1992)

    Article  ADS  Google Scholar 

  13. G.F.N. Cox, J. Glaciol. 29, 425 (1983)

    Article  ADS  Google Scholar 

  14. G.F.N. Cox, W.F. Weeks, J. Glaciol. 29, 306 (1983)

    Article  ADS  Google Scholar 

  15. G.F.N. Cox, J. Geophys. Res. 93, 449 (1988)

    Article  Google Scholar 

  16. D.J. Pringle, J.E. Miner, H. Eicken, K.M. Golden, J. Geophys. Res.: Oceans 114, C12017 (2009)

    Article  ADS  Google Scholar 

  17. W.F. Weeks, S.F. Ackley, in The Geophysics of Sea Ice, edited by N. Untersteiner (Plenum Press, New York, 1986) p. 9.

  18. M.O. Jeffries, R.A. Shaw, K. Morris, A.L. Veazey, H.R. Krouse, J. Geophys. Res.: Oceans 99, 985 (1994)

    Article  ADS  Google Scholar 

  19. C. Petrich, H. Eicken, in Sea Ice, edited by D.N. Thomas, G.S. Dieckmann (John Wiley & Sons, Chichester, 2010) chapt. 2

  20. J. Weissenberger, Environmental Conditions in the Brine Channels of Antarctic Sea Ice, Berichte zur Polarforschung (Alfred-Wegener-Inst. für Polar- und Meeresforschung, 1992)

  21. N.N. Medvedev, Y.I. Naberukhin, J. Non-Cryst. Solids 94, 402 (1987)

    Article  ADS  Google Scholar 

  22. M. Bestehorn, Hydrodynamik und Strukturbildung (Springer-Verlag, Berlin, Heidelberg, 2006)

  23. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

    Article  ADS  Google Scholar 

  24. A.N. Nevzorov, Izv. Atmos. Oceanic Phys. 42, 765 (2006)

    Article  ADS  Google Scholar 

  25. N.E. Dorsey, Properties of Ordinary Water-Substance (Reinhold Publishing Corp., New York, 1940)

  26. B. Kutschan, K. Morawetz, S. Gemming, Phys. Rev. E 81, 036106 (2010)

    Article  ADS  Google Scholar 

  27. K. Baumann, J.H. Bigram, W. Kanzig, Z. Phys. B 56, 315 (1984)

    Article  ADS  Google Scholar 

  28. S. Maus, On Brine Entrapment in Sea Ice: Morphological Stability, Microstructure and Convection (Logos, Berlin, 2007)

  29. A. Bogdan, J. Chem. Phys. 106, 1921 (1997)

    Article  ADS  Google Scholar 

  30. D. Eisenberg, W. Kauzmann, The Structure and Properties of Water (Clarendon Press, Oxford, 2005)

  31. S.M. Cox, P.C. Matthews, J. Comput. Phys. 176, 430 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  32. D.J. Pringle, J.E. Miner, H. Eicken, K.M. Golden, J. Geophys. Res.: Oceans 114, C12017 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Morawetz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morawetz, K., Thoms, S. & Kutschan, B. Formation of brine channels in sea ice. Eur. Phys. J. E 40, 25 (2017). https://doi.org/10.1140/epje/i2017-11512-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11512-x

Keywords

Navigation