Skip to main content
Log in

Magnetoconvection transient dynamics by numerical simulation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We investigate the transient and stationary buoyant motion of the Rayleigh-Bénard instability when the fluid layer is subjected to a vertical, steady magnetic field. For Rayleigh number, Ra, in the range 103-106, and Hartmann number, Ha, between 0 and 100, we performed three-dimensional direct numerical simulations. To predict the growth rate and the wavelength of the initial regime observed with the numerical simulations, we developed the linear stability analysis beyond marginal stability for this problem. We analyzed the pattern of the flow from linear to nonlinear regime. We observe the evolution of steady state patterns depending on \(Ra/Ha^{2}\) and Ha. In addition, in the nonlinear regime, the averaged kinetic energy is found to depend on Ra and to be independent of Ha in the studied range.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, 1961)

  2. R. Moreau, Prog. Crystal Growth 38, 161 (1999)

    Article  Google Scholar 

  3. H. Branover, Metallurgical Technologies, Energy Conversion, and Magnetohydrodynamic Flows, Vol. 148 (AIAA, 1993)

  4. Ch. Journeau, P. Piluso, J.F. Haquet, S. Saretta, E. Boccaccio, J.M. Bonnet, Proc. ICAPP (2007)

  5. E. Taberlet, Y. Fautrelle, J. Fluid Mech. 159, 409 (1985)

    Article  ADS  Google Scholar 

  6. J.M. Aurnou, P.L. Olson, J. Fluid Mech. 430, 283 (2001)

    Article  ADS  Google Scholar 

  7. U. Burr, U. Müller, Phys. Fluids 13, 3247 (2001)

    Article  ADS  Google Scholar 

  8. N.O. Weiss, M.R.E. Proctor, Magnetoconvection (Cambridge University Press, 2014)

  9. Y. Nakagawa, Nature 175, 417 (1955)

    Article  ADS  Google Scholar 

  10. Y. Nakagawa, Proc. R. Soc. London, Ser. A 240, 108 (1957)

    Article  ADS  Google Scholar 

  11. F.H. Busse, R.M. Clever, Phys. Fluids 25, 931 (1982)

    Article  ADS  Google Scholar 

  12. Y. Nandukumar, P. Pal, EPL 112, 24003 (2015)

    Article  ADS  Google Scholar 

  13. W.M. Macek, M. Strumik, Phys. Rev. Lett. 112, 074502 (2014)

    Article  ADS  Google Scholar 

  14. A. Basak, R. Raveendran, K. Kumar, Phys. Rev. E 90, 033002 (2014)

    Article  ADS  Google Scholar 

  15. A. Basak, K. Kumar, Eur. Phys. J. B 88, 1 (2015)

    Article  Google Scholar 

  16. T. Yanagisawa, Y. Yamagishi, Y. Hamano, Y. Tasaka, M. Yoshida, K. Yano, Y. Takeda, Phys. Rev. E 82, 016320 (2010)

    Article  ADS  Google Scholar 

  17. T. Yanagisawa, Y. Hamano, T. Miyagoshi, Y. Yamagishi, Y. Tasaka, Y. Takeda, Phys. Rev. E 88, 063020 (2013)

    Article  ADS  Google Scholar 

  18. Y. Takeda, Ultrasonic Doppler Velocity Profiler for Fluid Flow, Vol. 101 (Springer Science & Business Media, 2012)

  19. R. Moreau, Magnetohydrodynamics (Springer Science & Business Media, 1990)

  20. M.J. Assael, I.J. Armyra, J. Brillo, S.V. Stankus, J. Wu, W.A. Wakeham, J. Phys. Chem. Ref. Data 41, 033101 (2012)

    Article  ADS  Google Scholar 

  21. G. Grötzbach, J. Comput. Phys. 49, 241 (1983)

    Article  ADS  Google Scholar 

  22. J. Magnaudet, M. Rivero, J. Fabre, J. Fluid Mech. 284, 97 (1995)

    Article  ADS  Google Scholar 

  23. S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, PETSc users manual, Technical Report ANL-95/11 - Revision 3.6 (Argonne National Laboratory, 2015)

  24. S.W. Morris, E. Bodenschatz, D.S. Cannell, G. Ahlers, Phys. Rev. Lett. 71, 2026 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Renaudière de Vaux.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renaudière de Vaux, S., Zamansky, R., Bergez, W. et al. Magnetoconvection transient dynamics by numerical simulation. Eur. Phys. J. E 40, 13 (2017). https://doi.org/10.1140/epje/i2017-11499-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11499-2

Keywords

Navigation