Skip to main content
Log in

Non-equilibrium molecular dynamics simulations of the transient Ludwig-Soret effect in a binary Lennard-Jones/spline mixture

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A binary isotope mixture of Lennard-Jones/spline particles at equilibrium was perturbed by a sudden change in the system's boundary temperatures. The system's response was determined by non-equilibrium molecular dynamics (NEMD). Three transient processes were studied: 1) The propagation of a pressure (shock) wave, 2) heat diffusivity and conduction, and 3) thermal diffusion (the Ludwig-Soret effect). These three processes occur at different time scales, which makes it possible to separate them in one single NEMD run. The system was studied in liquid, supercritical, and dense gas states with various forms and strengths of the thermal perturbation. The results show that heat was initially transported by two separate mechanisms: 1) heat diffusion as described by the transient heat equation and 2) as a consequence of a pressure wave. The pressure wave travelled faster than the speed of sound, generating a shock wave in the system. Local equilibrium was found in the transient phase, even with very strong perturbations and in the shock front. Although the mass separation due to the Ludwig-Soret effect developed much slower than the pressure and temperature fields in the system at large, it was found that the Soret coefficient could be accurately determined from the initial phase of the transient and close to the heat source. This opens the possibility of a new way to analyse results from transient experiments and thereby minimize effects of gravity and convection due to buoyancy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ludwig, Sitz. Ber. Akad. Wiss. Wien Math-Naturw. Kl. 20, 539 (1856)

    Google Scholar 

  2. Ch. Soret, Arch. Sci. Phys. Nat. 2, 48 (1879)

    Google Scholar 

  3. S. deGroot, P. Mazur, Non-equilibrium Thermodynamics (Dover, 1984)

  4. S. Kjelstrup, D. Bedeaux, E. Johannesen, J. Gross, Non-Equilibrium Thermodynamics for Engingeers (World Scientific, New Jersey, 2010)

  5. M.M. Bou-Ali et al., Eur. Phys. J. E 38, 30 (2015)

    Article  Google Scholar 

  6. P.-A. Artola, B. Rousseau, Mol. Phys. 111, 3394 (2013)

    Article  ADS  Google Scholar 

  7. A. Firoozabadi, K. Ghoryaeb, K. Shukla, AIChE J. 46, 892 (2000)

    Article  Google Scholar 

  8. P. Bordat, D. Reith, F. Müller-Plathe, J. Chem. Phys. 115, 8978 (2001)

    Article  ADS  Google Scholar 

  9. G. Galliero et al., Fluid Phase Equilib. 208, 171 (2003)

    Article  Google Scholar 

  10. W. Köhler, K.I. Morozow, J. Non-equilib. Thermodyn. 41, 151 (2016)

    Article  ADS  Google Scholar 

  11. S. Srinivasan, M.Z. Saghir, Int. J. Therm. Sci. 50, 1125 (2011)

    Article  Google Scholar 

  12. J.K. Platten, J. Appl. Mech. 73, 5 (2006)

    Article  ADS  Google Scholar 

  13. S. Wiegand, J. Phys.: Condens. Matter 16, R357 (2004)

    ADS  Google Scholar 

  14. S.A. Putnam, D.G. Cahill, Rev. Sci. Instrum. 75, 2368 (2004)

    Article  ADS  Google Scholar 

  15. D.W. Pohl, P. Schwarz, V. Irniger, Phys. Rev. Lett. 31, 32 (1973)

    Article  ADS  Google Scholar 

  16. K. Thyagarajan, P. Lallemand, Opt. Commun. 26, 54 (1978)

    Article  ADS  Google Scholar 

  17. A. Mialdun, V. Shevtsova, J. Chem. Phys. 134, 044524 (2011)

    Article  ADS  Google Scholar 

  18. D. MacGowan, D.J. Evans, Phys. Rev. A 34, 2133 (1986)

    Article  ADS  Google Scholar 

  19. G.V. Paolini, G. Ciccotti, Phys. Rev. A 35, 5156 (1987)

    Article  ADS  Google Scholar 

  20. W.T. Ashurst, W.G. Hoover, Phys. Rev. A 11, 658 (1975)

    Article  ADS  Google Scholar 

  21. T. Ikeshoji, B. Hafskjold, Mol. Phys. 81, 251 (1994)

    Article  ADS  Google Scholar 

  22. B. Hafskjold, T. Ikeshoji, S.K. Ratkje, Mol. Phys. 80, 1389 (1993)

    Article  ADS  Google Scholar 

  23. F. Bresme, A. Lervik, J. Armstraong, Non-equilibrium Molecular Dynamics, in Experimental Thermodynamics, Volume X, Non-equilibrium Thermodynamics with Applications, edited by D. Bedeaux, S. Kjelstrup, J.V. Sengers (The Royal Society of Chemistry, Cambridge, 2016)

  24. F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997)

    Article  ADS  Google Scholar 

  25. D. Reith, F. Müller-Plathe, J. Chem. Phys. 112, 2436 (2000)

    Article  ADS  Google Scholar 

  26. P. Wirnsberger et al., J. Chem. Phys. 143, 124104 (2015)

    Article  ADS  Google Scholar 

  27. M. Ferrario, S. Bonella, G. Ciccotti, Eur. Phys. J. ST 225, 1629 (2016)

    Article  Google Scholar 

  28. B.L. Holian, D.J. Evans, J. Chem. Phys. 78, 5147 (1983)

    Article  ADS  Google Scholar 

  29. B. Hafskjold, S.K. Ratkje, J. Stat. Phys. 78, 463 (1995)

    Article  ADS  Google Scholar 

  30. G. Ciccotti, G. Jacucci, Phys. Rev. Lett. 35, 789 (1975)

    Article  ADS  Google Scholar 

  31. S. Van Vaerenbergh, J.C. Legros, Phys. Rev. A 41, 6727 (1990)

    Article  ADS  Google Scholar 

  32. P. Costesèque, T. Pollak, J.K. Platten, M. Marcoux, Eur. Phys. J. E 15, 249 (2004)

    Article  Google Scholar 

  33. K.B. Haugen, A. Firoozabadi, J. Chem. Phys. 127, 154507 (2007)

    Article  ADS  Google Scholar 

  34. Q. Galand, S. Van Vaerenbergh, Eur. Phys. J. E 38, 26 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn Hafskjold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafskjold, B. Non-equilibrium molecular dynamics simulations of the transient Ludwig-Soret effect in a binary Lennard-Jones/spline mixture. Eur. Phys. J. E 40, 4 (2017). https://doi.org/10.1140/epje/i2017-11492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11492-9

Keywords

Navigation