Ratchet effect for two-dimensional nanoparticle motion in a corrugated oscillating channel

Regular Article

Abstract.

The motion of a single rigid or elastic particle inside a corrugated narrow channel is investigated by means of Brownian dynamics simulations. Periodic oscillations of one of the asymmetric channel surfaces induce directed particle transport. For different surface structures of the resting channel surface, we determine optimal transport properties in terms of the driving frequency, particle size, and corrugation amplitude. The transport direction is changed when switching from perpendicular motion of the oscillating surface to parallel motion with respect to the resting surface, which can be rationalized by a transition from a flashing to a pushing ratchet effect. We also study the diffusion behavior and find strongly enhanced diffusion for parallel oscillatory motion with a diffusivity significantly larger than for free diffusion. Elastic large particles exhibit suppressed transport with increasing rigidity. In contrast, for small particles, increasing rigidity enhances the particle transport both in terms of particle velocity and diffusivity.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    A. Ajdari, J. Prost, C.r. Acad. Sci. Ser. II 315, 1635 (1992)Google Scholar
  2. 2.
    R. Dean Astumian, Science 276, 917 (1997)CrossRefGoogle Scholar
  3. 3.
    Frank Jülicher, Armand Ajdari, Jacques Prost, Rev. Mod. Phys. 69, 1269 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Andrea Parmeggiani, Frank Jülicher, Armand Ajdari, Jacques Prost, Phys. Rev. E 60, 2127 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Peter Reimann, Phys. Rep. 361, 57 (2002)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Michael Pycraft Hughes, J. Phys. D: Appl. Phys. 37, 1275 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    P. Hänggi, F. Marchesoni, F. Nori, Ann. Phys. 14, 51 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Peter Hänggi, Fabio Marchesoni, Rev. Mod. Phys. 81, 387 (2009)CrossRefGoogle Scholar
  9. 9.
    I.M. Kulić, R. Thaokar, H. Schiessel, Europhys. Lett. 72, 527 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    I.M. Kulic, P.C. Nelson, EPL 81, 18001 (2008)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Kazuo Kitamura, Makio Tokunaga, Atsuko Hikikoshi Iwane, Toshio Yanagida, Nature 397, 129 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    J. Lademann, F. Knorr, H. Richter, S. Jung, M.C. Meinke, E. Rühl, U. Alexiev, M. Calderon, A. Patzelt, J. Innov. Opt. Health Sci. 08, 1530004 (2015)CrossRefGoogle Scholar
  13. 13.
    B. Nordén, Y. Zolotaryuk, P.L. Christiansen, A.V. Zolotaryuk, Phys. Rev. E 65, 011110 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    L. Mahadevan, S. Daniel, M.K. Chaudhury, Proc. Natl. Acad. Sci. 101, 23 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    I.M. Kulic, M. Mani, H. Mohrbach, R. Thaokar, L. Mahadevan, Proc. R. Soc. B: Biol. Sci. 276, 2243 (2009)CrossRefGoogle Scholar
  16. 16.
    C.J. Olson Reichhardt, C. Reichhardt, Ratchet effects in active matter systems, arXiv:1604.01072 [cond-mat.soft]
  17. 17.
    T.-Q. Truong, N.-T. Nguyen, Simulation and optimization of tesla valves, in Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, Vol. 1 (2003) p. 178Google Scholar
  18. 18.
    Tarl W. Prow, Jeffrey E. Grice, Lynlee L. Lin, Rokhaya Faye, Margaret Butler, Wolfgang Becker, Elisabeth M.T. Wurm, Corinne Yoong, Thomas A. Robertson, H. Peter Soyer, Michael S. Roberts, Adv. Drug Deliv. Rev. 63, 470 (2011)CrossRefGoogle Scholar
  19. 19.
    Lukas Bogunovic, Ralf Eichhorn, Jan Regtmeier, Dario Anselmetti, Peter Reimann, Soft Matter 8, 3900 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    J. Lademann, H. Richter, M.C. Meinke, B. Lange-Asschenfeldt, C. Antoniou, W.C. Mak, R. Renneberg, W. Sterry, A. Patzelt, Skin Pharmacol. Physiol. 26, 227 (2013)CrossRefGoogle Scholar
  21. 21.
    Juergen Lademann, Heike Richter, Alexa Teichmann, Nina Otberg, Ulrike Blume-Peytavi, Javiana Luengo, Barbara Weiss, Ulrich F. Schaefer, Claus-Michael Lehr, Roger Wepf, Wolfram Sterry, Eur. J. Pharm. Biopharm. 66, 159 (2007)CrossRefGoogle Scholar
  22. 22.
    Juergen Lademann, Alexa Patzelt, Heike Richter, Christina Antoniou, Wolfram Sterry, Fanny Knorr, J. Biomed. Opt. 14, 021014 (2009)CrossRefGoogle Scholar
  23. 23.
    Leszek J. Wolfram, J. Am. Acad. Dermatol. 48, S106 (2003)CrossRefGoogle Scholar
  24. 24.
    M. Ossadnik, H. Richter, A. Teichmann, S. Koch, U. Schäfer, R. Wepf, W. Sterry, J. Lademann, Laser Phys. 16, 747 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Roland Bartussek, Peter Hänggi, Jürgen G. Kissner, Europhys. Lett. 28, 459 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    M. Ito, Arch. Dermatol. Res. 279, 112 (1986)CrossRefGoogle Scholar
  27. 27.
    A.L.R. Bug, B.J. Berne, Phys. Rev. Lett. 59, 948 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    Sindy Trauer, Heike Richter, Judith Kuntsche, Rolf Büttemeyer, Manfred Liebsch, Michael Linscheid, Alfred Fahr, Monika Schäfer-Korting, Jürgen Lademann, Alexa Patzelt, Eur. J. Pharm. Biopharm. 86, 301 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsFreie Universität BerlinBerlinGermany

Personalised recommendations