Thermophoresis of cyclic oligosaccharides in polar solvents

  • Kazuya Eguchi
  • Doreen Niether
  • Simone Wiegand
  • Rio Kita
Regular Article
Part of the following topical collections:
  1. Non-isothermal transport in complex fluids

Abstract.

Cyclodextrins are cyclic oligosaccharides which are interesting as drug delivery systems, because they can be used as containers for pharmaceutical substances. We studied the Ludwig-Soret effect of \( \alpha\)-, \( \beta\)-, \( \gamma\)- and methyl-\( \beta\)-cyclodextrin in water and formamide by infrared thermal diffusion forced Rayleigh scattering (IR-TDFRS). In water the Soret coefficient, S T, of \( \alpha\)-, \( \beta\)- and \( \gamma\)-cyclodextrin increases with increasing temperature and shows a sign change from negative to positive around T = 35 ° C, while S T of methyl-\( \beta\)-cyclodextrin is positive in the entire investigated temperature. In formamide S T-values of all cyclodextrins coincide and show a slight decrease with temperature. We discuss the obtained results and relate the S T-values to the different hydrogen bonding capabilities of the cyclodextrins and the used solvents. It turns out that the change of S T with temperature correlates with the partition coefficient, logP, which indicates that more hydrophilic substances show a more pronounced temperature sensitivity of S T. Additionally we obtained a surprising result measuring the refractive index contrast factor with temperature, \((\partial n/\partial T)_{c,p}\) of cyclodextrins in formamide, which might be explained by a complex formation between cyclodextrins and formamide.

Graphical abstract

Keywords

Topical Issue: Non-isothermal transport in complex fluids 

References

  1. 1.
    S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (Dover, New York, 1984)Google Scholar
  2. 2.
    F. Montel, J. Bickert, A. Lagisquet, G. Galliero, J. Pet. Sci. Eng. 58, 391 (2007)CrossRefGoogle Scholar
  3. 3.
    C. Angeli, E. Leonardi, Int. J. Heat Mass Transfer 48, 4633 (2005)CrossRefGoogle Scholar
  4. 4.
    M.E. Schimpf, J.C. Giddings, J. Polym. Sci. Pol. Phys. 27, 1317 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    C.B. Mast, D. Braun, Phys. Rev. Lett. 104, 188102 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    D. Niether, D. Afanasenkau, J.K.G. Dhont, S. Wiegand, Proc. Natl. Acad. Sci. U.S.A. 113, 4272 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    W. Köhler, K.I. Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    E.M. Martin Del Valle, Process Biochem. 39, 1033 (2004)CrossRefGoogle Scholar
  9. 9.
    Sunil S. Jambhekar, Philip Breen, Drug Discov. Today 21, 356 (2015)CrossRefGoogle Scholar
  10. 10.
    K.I. Morozov, W. Köhler, Langmuir 30, 6571 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Iacopini, R. Rusconi, R. Piazza, Eur. Phys. J. E 19, 59 (2006)CrossRefGoogle Scholar
  12. 12.
    Z. Wang, H. Kriegs, S. Wiegand, J. Phys. Chem. B 116, 7463 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Kishikawa, S. Wiegand, R. Kita, Biomacromolecules 11, 740 (2010)CrossRefGoogle Scholar
  14. 14.
    R. Sugaya, B.A. Wolf, R. Kita, Biomacromolecules 7, 435 (2006)CrossRefGoogle Scholar
  15. 15.
    K. Maeda, N. Shinyashiki, S. Yagihara, S. Wiegand, R. Kita, J. Chem. Phys. 143, 124504 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    P.R. Rablen, J.W. Lockman, W.L. Jorgensen, J. Phys. Chem. A 102, 3782 (1998)CrossRefGoogle Scholar
  17. 17.
    J.P.M. Lommerse, S.L. Price, R. Taylor, J. Comput. Chem. 18, 757 (1997)CrossRefGoogle Scholar
  18. 18.
    Simone Wiegand, Werner Köhler, Thermal Nonequilib. Phenom. Fluid Mixtures 584, 189 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    S. Wiegand, H. Ning, H. Kriegs, J. Phys. Chem. B 111, 14169 (2007)CrossRefGoogle Scholar
  20. 20.
    W. Köhler, P. Rossmanith, J. Phys. Chem. 99, 5838 (1995)CrossRefGoogle Scholar
  21. 21.
    H. Ning, S. Datta, T. Sottmann, S. Wiegand, J. Phys. Chem. B 112, 10927 (2008)CrossRefGoogle Scholar
  22. 22.
    B. Arlt, S. Datta, T. Sottmann, S. Wiegand, J. Phys. Chem. B 114, 2118 (2010)CrossRefGoogle Scholar
  23. 23.
    P. Blanco, H. Kriegs, M.P. Lettinga, P. Holmqvist, S. Wiegand, Biomacromolecules 12, 1602 (2011)CrossRefGoogle Scholar
  24. 24.
    G. Wittko, W. Köhler, Philos. Mag. 83, 1973 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    H. Ning, R. Kita, H. Kriegs, J. Luettmer-Strathmann, S. Wiegand, J. Phys. Chem. B 110, 10746 (2006)CrossRefGoogle Scholar
  26. 26.
    R.D. Camerini-Otero, R.M. Franklin, L.A. Day, Biochemistry 13, 3763 (1974)CrossRefGoogle Scholar
  27. 27.
    V.V. Sechenyh, J. Legros, V. Shevtsova, J. Chem. Thermodyn. 43, 1700 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Becker, W. Köhler, B. Müller, Ber. Bunsen. Phys. Chem. 99, 600 (1995)CrossRefGoogle Scholar
  29. 29.
    K. Harata, Bull. Chem. Soc. Jpn. 52, 2451 (1979)CrossRefGoogle Scholar
  30. 30.
    T. Aree, B. Schulz, G. Reck, J. Inclus. Phenom. Macrocyclic Chem. 47, 39 (2003)CrossRefGoogle Scholar
  31. 31.
    M.D. Elola, B.M. Ladanyi, J. Chem. Phys. 125, 184506 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Delivery Rev. 64, 4 (2012)CrossRefGoogle Scholar
  33. 33.
    S. Hartmann, W. Köhler, K.I. Morozov, Soft Matter 8, 1355 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kazuya Eguchi
    • 1
  • Doreen Niether
    • 2
  • Simone Wiegand
    • 2
    • 3
  • Rio Kita
    • 1
    • 4
  1. 1.School of ScienceTokai UniversityKanagawaJapan
  2. 2.ICS-3 Soft Condensed MatterForschungszentrum Juelich GmbHJuelichGermany
  3. 3.Chemistry Department - Physical ChemistryUniversity CologneCologneGermany
  4. 4.Micro/Nano Technology CenterTokai UniversityKanagawaJapan

Personalised recommendations