Skip to main content
Log in

Centrifugal instability of pulsed Taylor-Couette flow in a Maxwell fluid

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Centrifugal instability of a pulsed flow in a viscoelastic fluid confined in a Taylor-Couette system is investigated. Both cylinders are subject to an out-of-phase modulation of rotation with equal modulation amplitude and modulation frequency. The fluid is assumed to obey a linear Maxwell fluid with a relaxation time and a constant viscosity. Attention is focused on the linear stability analysis and on the effect of Deborah and frequency numbers on the critical values of the Taylor and wave numbers. Using Floquet theory, we show that in the limit of low frequency, the Deborah number has no effect on the stability of the basic state which tends to the classical configuration of steady circular Couette flow. When the frequency number increases, the stability of the basic flow is enhanced and the Deborah number has a destabilizing effect which is strongly pronounced in the high-frequency limit. In this frequency limit, the critical parameters tend to constant values independently of the frequency number. These numerical results are in good agreement with the asymptotic solutions obtained in the limit of low and high frequencies. Moreover, a correlation between the rheological proprieties of the fluid in a rheometric experience, especially the loss and storage modulus, and this hydrodynamical instability behavior is presented.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Thompson, Instabilities of some time-dependent flows, Ph.D. Thesis, Massachussetts institute of technology (1968)

  2. P.J. Riley, R. Laurence, J. Fluid Mech. 75, 625 (1976)

    Article  ADS  Google Scholar 

  3. S. Carmi, J.I. Tustaniwskyi, J. Fluid Mech. 108, 19 (1981)

    Article  ADS  Google Scholar 

  4. T.J. Walsh, R.J Donnelly, Phys. Rev. Lett. 60, 700 (1988)

    Article  ADS  Google Scholar 

  5. C.F. Barenghi, C.A. Jones, J. Fluid Mech. 208, 127 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  6. C.M. Gassa Feugaing, O. Crumeyrolle, K.-S. Yang, I. Mutabazi, Eur. J. Mech. B/Fluids 44, 82 (2014)

    Article  ADS  Google Scholar 

  7. A. Aouidef, C. Normand, A. Stegner, J.E. Wesfreid, Phys. Fluids 11, 3665 (1994)

    Article  ADS  Google Scholar 

  8. A. Aouidef, C. Normand, C. R. Acad. Sci. II B 322, 545 (1996)

    Google Scholar 

  9. A. Aouidef, C. Normand, Eur. J. Mech. B Fluids 19, 89 (2000)

    Article  ADS  Google Scholar 

  10. S.G.K. Tennakoon, D. Andreck, A. Aouidef, C. Normand, Eur. J. Mech. B Fluids 16, 227 (1997)

    Google Scholar 

  11. T. Annable, R. Buscall, R. Ettelaie, P. Shepherd, D. Whittlestone, Langmuir 10, 1060 (1994)

    Article  Google Scholar 

  12. T. Annable, R. Buscall, R. Ettelaie, D. Whittlestone, Langmuir 37, 695 (1993)

    Google Scholar 

  13. T. Shikata, Nihon Reoroji Gakkaishi 25, 255 (1997)

    Article  Google Scholar 

  14. P. Fischer, H. Rehage, Langmuir 13, 7012 (1997)

    Article  Google Scholar 

  15. A.A. Ali, R. Makhloufi, Phys. Rev. 56, 4474 (1997)

    ADS  Google Scholar 

  16. M.E. Cates, J. Phys. Condens. Matter 8, 9167 (1996)

    Article  ADS  Google Scholar 

  17. M.E. Cates, Struct. Flow Surf. Solut. 578, 32 (1994)

    Article  Google Scholar 

  18. H. Hoffmann, Struct. Flow Surf. Solut. 578, 2 (1994)

    Article  Google Scholar 

  19. Aditya Bandopadhyay, Uddipta Ghosh, Suman Chakraborty, J. Non-Newton. Fluid Mech. 202, 1 (2013)

    Article  Google Scholar 

  20. G. Tomar, V. Shankar, S.K. Shukla, A. Sharma, G. Biswas, Eur. Phys. J. E 20, 185 (2006)

    Article  Google Scholar 

  21. Mehdi Riahi, Saïd Aniss, Mohamed Ouazzani Touhami, Salah Skali Lami, J. Soc. Rheol. Jpn. 42, 321 (2014)

    Article  Google Scholar 

  22. Mehdi Riahi, Saïd Aniss, Mohamed Ouazzani Touhami, Salah Skali Lami, Eur. Phys. J. Plus 130, 253 (2015)

    Article  Google Scholar 

  23. E.S.G. Shaqfeh, Ann. Rev. Fluid Mech. 31, 129 (1960)

    Google Scholar 

  24. S.J. Muller, R.G. Larson, E.S.G. Shaqfeh, Rheol. Acta 28, 499 (1989)

    Article  Google Scholar 

  25. R.G. Larson, E.S.G. Shaqfeh, S.J. Muller, J. Non-Newton. Fluid Mech. 51, 195 (1994)

    Article  Google Scholar 

  26. Peter Fischer, Rheol. Acta 39, 234 (2000)

    Article  Google Scholar 

  27. E. Guyon, J.P. Hulin, L. Petit, Hydrodynamique Physique (EDP Sciences - CNRS Editions) 2001

  28. H.A. Barnes, A handbook of elementary rheology (Institute of non-Newtonian Fluid Mechanics, University of Wales, 2000)

  29. B. Oukada, M.T. Ouazzani, S. Aniss, C. R. Mec. 334, 205 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Riahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riahi, M., Aniss, S., Ouazzani Touhami, M. et al. Centrifugal instability of pulsed Taylor-Couette flow in a Maxwell fluid. Eur. Phys. J. E 39, 82 (2016). https://doi.org/10.1140/epje/i2016-16082-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16082-9

Keywords

Navigation