Skip to main content
Log in

Transport of organelles by elastically coupled motor proteins

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Motor-driven intracellular transport is a complex phenomenon where multiple motor proteins simultaneously attached on to a cargo engage in pulling activity, often leading to tug-of-war, displaying bidirectional motion. However, most mathematical and computational models ignore the details of the motor-cargo interaction. A few studies have focused on more realistic models of cargo transport by including elastic motor-cargo coupling, but either restrict the number of motors and/or use purely phenomenological forms for force-dependent hopping rates. Here, we study a generic model in which N motors are elastically coupled to a cargo, which itself is subjected to thermal noise in the cytoplasm and to an additional external applied force. The motor-hopping rates are chosen to satisfy detailed balance with respect to the energy of elastic stretching. With these assumptions, an (N + 1) -variable master equation is constructed for dynamics of the motor-cargo complex. By expanding the hopping rates to linear order in fluctuations in motor positions, we obtain a linear Fokker-Planck equation. The deterministic equations governing the average quantities are separated out and explicit analytical expressions are obtained for the mean velocity and diffusion coefficient of the cargo. We also study the statistical features of the force experienced by an individual motor and quantitatively characterize the load-sharing among the cargo-bound motors. The mean cargo velocity and the effective diffusion coefficient are found to be decreasing functions of the stiffness. While the increase in the number of motors N does not increase the velocity substantially, it decreases the effective diffusion coefficient which falls as 1/N asymptotically. We further show that the cargo-bound motors share the force exerted on the cargo equally only in the limit of vanishing elastic stiffness; as stiffness is increased, deviations from equal load sharing are observed. Numerical simulations agree with our analytical results where expected. Interestingly, we find in simulations that the stall force of a cargo elastically coupled to motors is independent of the stiffness of the linkers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Howard, Mechanics of Motor Proteins and Cytoskeleton (Sinauer Press, Sunderland, MA, 2001)

  2. A.B. Kolomeisky, Motor Proteins and Molecular Motors (CRC Press, Boca Raton, FL, 2015)

  3. D. Chowdhury, Phys. Rep. 529, 1 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Desai, T.J. Mitchison, Annu. Rev. Cell. Dev. Biol. 13, 83 (1997)

    Article  Google Scholar 

  5. S.M. Block, L.S.B. Goldstein, B.J. Schnapp, Nature 348, 348 (1990)

    Article  ADS  Google Scholar 

  6. S.P. Gross, Curr. Biol. 17, R478 (2007)

    Article  Google Scholar 

  7. S.P. Gross, Phys. Biol. 1, R1 (2004)

    Article  ADS  Google Scholar 

  8. M.A. Welte, Curr. Biol. 14, R525 (2004)

    Article  Google Scholar 

  9. V. Soppina, A.K. Rai, A.J. Ramaiya, P. Barak, R. Mallik, Proc. Natl. Acad. Sci. U.S.A. 106, 19381 (2009)

    Article  ADS  Google Scholar 

  10. A.G. Hendricks, E. Perlson, J.L. Ross, H.W. Schroeder III, M. Takito, E.L.F. Holzbaur, Curr. Biol. 20, 697 (2010)

    Article  Google Scholar 

  11. A.R. Rogers, J.W. Driver, P.E. Constantinou, D.K. Jamisonb, M.R. Diehl, Phys. Chem. Chem. Phys. 11, 4882 (2009)

    Article  Google Scholar 

  12. K. Furuta, A. Furuta, Y.Y. Toyoshima, M. Amino, K. Oiwa, H. Kojima, Proc. Natl. Acad. Sci. U.S.A. 110, 501 (2013)

    Article  ADS  Google Scholar 

  13. C.M. Coppin, J.T. Finer, J.A. Spudich, R.D. Vale, Proc. Natl. Acad. Sci. U.S.A. 93, 1913 (1996)

    Article  ADS  Google Scholar 

  14. C.M. Coppin, D.W. Pierce, L.O. Hsu, R.D. Vale, Proc. Natl. Acad. Sci. U.S.A. 94, 8539 (1997)

    Article  ADS  Google Scholar 

  15. S. Klumpp, R. Lipowsky, Proc. Natl. Acad. Sci. U.S.A. 102, 17284 (2005)

    Article  ADS  Google Scholar 

  16. M.J. Müller, S. Klumpp, R. Lipowsky, Proc. Natl. Acad. Sci. U.S.A. 105, 4609 (2008)

    Article  ADS  Google Scholar 

  17. M.J.I. Müller, S. Klumpp, R. Lipowsky, Biophys. J. 98, 2610 (2010)

    Article  Google Scholar 

  18. M.J.I. Müller, S. Klumpp, R. Lipowsky, J. Stat. Phys. 133, 1059 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Kunwar, S.K. Tripathy, J. Xu, M.K. Mattson, P. Anand, R. Sigua, M. Vershinin, R.J. McKenney, C.C. Yu, A. Mogilner, S.P. Gross, Proc. Natl. Acad. Sci. U.S.A. 108, 18960 (2011)

    Article  ADS  Google Scholar 

  20. A. Kunwar, M. Vershinin, J. Xu, S.P. Gross, Curr. Biol. 18, 1173 (2008)

    Article  Google Scholar 

  21. D. Materassi, S. Roychowdhury, T. Hays, M. Salapaka, BMC Biophys. 6, 14 (2013)

    Article  Google Scholar 

  22. S. Bouzat, F. Falo, Phys. Biol. 7, 046009 (2010)

    Article  ADS  Google Scholar 

  23. S. Bouzat, F. Falo, Phys. Biol. 8, 066010 (2011)

    Article  ADS  Google Scholar 

  24. J.W. Driver, A.R. Rogers, D.K. Jaminson, R.K. Das, A.B. Kolomeisky, M.R. Diehl, Phys. Chem. Chem. Phys. 12, 10398 (2012)

    Article  Google Scholar 

  25. F. Berger, C. Keller, S. Klumpp, R. Lipowsky, Phys. Rev. Lett. 108, 208101 (2012)

    Article  ADS  Google Scholar 

  26. F. Berger, C. Keller, R. Lipowsky, S. Klumpp, Cell. Mol. Bioeng. 6, 48 (2013)

    Article  Google Scholar 

  27. F. Berger, C. Keller, S. Klumpp, R. Lipowsky, Phys. Rev. E 91, 022701 (2015)

    Article  ADS  Google Scholar 

  28. E. Zimmermann, U. Seifert, Phys. Rev. E 91, 022709 (2015)

    Article  ADS  Google Scholar 

  29. S. Bouzat, Phys. Rev. E 93, 012401 (2016)

    Article  ADS  Google Scholar 

  30. R. Mallik, B.C. Carter, S.A. Lex, S.J. King, S.P. Gross, Nature 427, 649 (2004)

    Article  ADS  Google Scholar 

  31. A.K. Rai, A. Rai, A.J. Ramaiya, R. Jha, R. Mallik, Cell 152, 1 (2013)

    Article  Google Scholar 

  32. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 2007)

  33. M.E. Fisher, A.B. Kolomeisky, Proc. Natl. Acad. Sci. U.S.A. 96, 6597 (1999)

    Article  ADS  Google Scholar 

  34. T. Schmiedl, U. Seifert, EPL 83, 30005 (2008)

    Article  ADS  Google Scholar 

  35. E.B. Stukalin, H. Phillips III, A.B. Kolomeisky, Phys. Rev. Lett. 94, 238101 (2005)

    Article  ADS  Google Scholar 

  36. E.B. Stukalin, A.B. Kolomeisky, Phys. Rev. E 73, 031922 (2006)

    Article  ADS  Google Scholar 

  37. K. Visscher, M.J. Schnitzer, S.M. Block, Nature 400, 184 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Bhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, D., Gopalakrishnan, M. Transport of organelles by elastically coupled motor proteins. Eur. Phys. J. E 39, 71 (2016). https://doi.org/10.1140/epje/i2016-16071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16071-0

Keywords

Navigation