Skip to main content
Log in

A novel technique to initiate and investigate scroll waves in thin layers of the photosensitive Belousov-Zhabotinsky reaction

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

While free scroll rings are non-stationary objects that either grow or contract with time, spatial confinement can have a large impact on their evolution reaching from significant lifetime extension (J.F. Totz, H. Engel, O. Steinbock, New J. Phys. 17, 093043 (2015)) up to formation of stable stationary and breathing pacemakers (A. Azhand, J.F. Totz, H. Engel, EPL 108, 10004 (2014)). Here, we explore the parameter range in which the interaction between an axis-symmetric scroll ring and a confining planar no-flux boundary can be studied experimentally in transparent gel layers supporting chemical wave propagation in the photosensitive variant of the Belousov-Zhabotinsky medium. Based on full three-dimensional simulations of the underlying modified complete Oregonator model for experimentally realistic parameters, we determine the conditions for successful initiation of scroll rings in a phase diagram spanned by the layer thickness and the applied light intensity. Furthermore, we discuss whether the illumination-induced excitability gradient due to Lambert-Beer’s law as well as a possible inclination of the filament plane with respect to the no-flux boundary can destabilize the scroll ring.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.T. Winfree, Science 175, 634 (1972)

    Article  ADS  Google Scholar 

  2. N.A. Goroleva, J. Bures, J. Neurobiol. 14, 353 (1983)

    Article  Google Scholar 

  3. S. Jakubith, H.H. Rotermund, W. Engel, A. von Oertzen, G. Ertl, Phys. Rev. Lett. 65, 3013 (1990)

    Article  ADS  Google Scholar 

  4. F. Siegert, C.J. Weijer, Physica D 49, 37 (1991)

    Article  Google Scholar 

  5. J.M. Davidenko, A.M. Pertsov, R. Salomonsz, W. Baxter, J. Jalife, Nature 355, 349 (1992)

    Article  ADS  Google Scholar 

  6. T. Frisch, S. Rica, P Coullet, J.M. Gilli, Phys. Rev. Lett. 72, 1471 (1994)

    Article  ADS  Google Scholar 

  7. G. Kastbereger, E. Schmelzer, I. Kranner, PLOS One 3, e3141 (2008)

    Article  ADS  Google Scholar 

  8. M.R. Tinsley, D. Collison, K. Showalter, J. Phys. Chem. A 117, 12719 (2013)

    Article  Google Scholar 

  9. A.T. Winfree, Science 181, 934 (1973)

    Article  ADS  Google Scholar 

  10. A.B. Medvinsky, A.V. Panfilov, A.M. Pertsov, in Self-Organization: Autowaves and Structures Far From Equilibrium, edited by V.I. Krinsky (Springer, Heidelberg, 1984) p. 195

  11. J.P. Keener, Physica D 31, 269 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  12. V.N. Biktashev, A.V. Holden, H. Zhang, Philos. Trans. R. Soc. A 347, 611 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  13. A.V. Panfilov, A.N. Rudenko, Physica D 28, 215 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  14. T. Bánsági, O. Steinbock, Phys. Rev. E 76, 045202(R) (2007)

    Article  ADS  Google Scholar 

  15. V.N. Biktashev, Int. J. Bifurcat. Chaos 8, 677 (1998)

    Article  MathSciNet  Google Scholar 

  16. S. Alonso, F. Sagues, A.S. Mikhailov, Science 299, 1722 (2003)

    Article  ADS  Google Scholar 

  17. A.T. Winfree, Sci. Am. 230, 82 (1974)

    Article  Google Scholar 

  18. B. Welsh, J. Gomatam, A. Burgess, Nature 304, 611 (1983)

    Article  ADS  Google Scholar 

  19. A.T. Winfree, W. Jahnke, J. Phys. Chem. 93, 2823 (1989)

    Article  Google Scholar 

  20. T. Bánsági, O. Steinbock, Phys. Rev. Lett. 97, 198301 (2006)

    Article  ADS  Google Scholar 

  21. L.V. Yakushevich, Stud. Biophys. 100, 195 (1984)

    Google Scholar 

  22. H. Dierckx, H. Verschelde, Phys. Rev. E 88, 062907 (2013)

    Article  ADS  Google Scholar 

  23. P.J. Nandapurkar, A.T. Winfree, Physica D 35, 277 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Azhand, J.F. Totz, H. Engel, EPL 108, 10004 (2014)

    Article  ADS  Google Scholar 

  25. J.F. Totz, H. Engel, O. Steinbock, New J. Phys. 17, 093043 (2015)

    Article  ADS  Google Scholar 

  26. H. Dierckx, H. Verschelde, Ö. Selsil, V.N. Biktashev, Phys. Rev. Lett. 109, 174102 (2012)

    Article  ADS  Google Scholar 

  27. I.V. Biktasheva, H. Dierckx, V.N. Biktashev, Phys. Rev. Lett. 114, 068302 (2015)

    Article  ADS  Google Scholar 

  28. H. Ke, Z. Zhang, O. Steinbock, Chaos 25, 064303 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. I. Aranson, L. Kramer, A. Weber, Phys. Rev. E 47, 3231 (1993)

    Article  ADS  Google Scholar 

  30. I. Aranson, D. Kessler, I. Mitkov, Phys. Rev. E 50, R2395 (1994)

    Article  ADS  Google Scholar 

  31. H. Brandtstädter, M. Braune, I. Schebesch, H. Engel, Chem. Phys. Lett. 323, 145 (2000)

    Article  ADS  Google Scholar 

  32. H. Henry, V. Hakim, Phys. Rev. E 65, 046235 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  33. I.V. Biktasheva, V.N. Biktashev, Phys. Rev. E 67, 026221 (2003)

    Article  ADS  Google Scholar 

  34. I.V. Biktasheva, D. Barkley, V.N. Biktashev, G.V. Bordyugov, A.J. Foulkes, Phys. Rev. E 79, 056702 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. D. Kupitz, M.J.B. Hauser, J. Phys. Chem. A 117, 12711 (2013)

    Article  Google Scholar 

  36. H.-J. Krug, L. Pohlmann, L. Kuhnert, J. Phys. Chem. 94, 4862 (1990)

    Article  Google Scholar 

  37. H. Linde, H. Engel, Physica D 49, 13 (1991)

    Article  ADS  Google Scholar 

  38. T. Amemiya, S. Kádár, P. Kettunen, K. Showalter, Phys. Rev. Lett. 77, 3244 (1996)

    Article  ADS  Google Scholar 

  39. T. Amemiya, P. Kettunen, S. Kádár, T. Yamaguchi, K. Showalter, Chaos 8, 872 (1998)

    Article  ADS  Google Scholar 

  40. S. Kádár, T. Amemiya, K. Showalter, J. Phys. Chem. A 101, 8200 (1997)

    Article  Google Scholar 

  41. O.-U. Kheowan, V. Gáspár, V.S. Zykov, S.C. Müller, Phys. Chem. Chem. Phys. 3, 4747 (2001)

    Article  Google Scholar 

  42. A.P. Muñuzuri, V. P. Pérez-Villar, M. Markus, Phys. Rev. Lett. 79, 1941 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Azhand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhand, A., Buchholz, R., Totz, J. et al. A novel technique to initiate and investigate scroll waves in thin layers of the photosensitive Belousov-Zhabotinsky reaction. Eur. Phys. J. E 39, 61 (2016). https://doi.org/10.1140/epje/i2016-16061-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16061-2

Keywords

Navigation