Vesicles-on-a-chip: A universal microfluidic platform for the assembly of liposomes and polymersomes

Abstract.

In this study, we present a PDMS-based microfluidic platform for the fabrication of both liposomes and polymersomes. Based on a double-emulsion template formed in flow-focusing configuration, monodisperse liposomes and polymersomes are produced in a controlled manner after solvent extraction. Both types of vesicles can be formed from the exact same combination of fluids and are stable for at least three months under ambient storage conditions. By tuning the flow rates of the different fluid phases in the flow-focusing microfluidic design, the size of the liposomes and polymersomes can be varied over at least one order of magnitude. This method offers a versatile tool for future studies, e.g., involving the encapsulation of biological agents and the functionalization of artificial cell membranes, and might also be applicable for the controlled fabrication of hybrid vesicles.

Graphical abstract

References

  1. 1

    J.W. Szostak, D.P. Bartel, P.L. Luisi, Nature 409, 387 (2001)

    ADS  Article  Google Scholar 

  2. 2

    D. Deamer, Trends Biotechnol. 23, 336 (2005)

    Article  Google Scholar 

  3. 3

    A.D. Griffiths, D.S. Tawfik, Trends Biotechnol. 24, 395 (2006)

    Article  Google Scholar 

  4. 4

    D.S. Tawfik, A.D. Griffiths, Nat. Biotechnol. 16, 652 (1998)

    Article  Google Scholar 

  5. 5

    P.L. Luisi, Anatom. Record 268, 208 (2002)

    Article  Google Scholar 

  6. 6

    P. Schwille, S. Diez, Crit. Rev. Biochem. Mol. Biol. 44, 223 (2009)

    Article  Google Scholar 

  7. 7

    V. Noireaux, A. Libchaber, Proc. Natl. Acad. Sci. U.S.A. 101, 17669 (2004)

    ADS  Article  Google Scholar 

  8. 8

    S. Mirschel, K. Steinmetz, M. Rempel, M. Ginkel, E.D. Gilles, Bioinformatics 25, 687 (2009)

    Article  Google Scholar 

  9. 9

    S. Klamt, J. Saez-Rodriguez, E. Gilles, BMC Syst. Biol. 13, 1 (2007)

    Google Scholar 

  10. 10

    M. Hucka, A. Finney, H.M. Sauro, H. Bolouri, J.C. Doyle, H. Kitano, A.P. Arkin, B.J. Bornstein, D. Bray, A. Cornish-Bowden et al., Bioinformatics 19, 524 (2003)

    Article  Google Scholar 

  11. 11

    J. Stelling, S. Klamt, K. Bettenbrock, Nature 420, 3 (2002)

    ADS  Article  Google Scholar 

  12. 12

    S. Mann, Angew. Chem. Int. Ed. 52, 155 (2013)

    Article  Google Scholar 

  13. 13

    P. Stano, P.L. Luisi, Chem. Commun. 46, 3639 (2010)

    Article  Google Scholar 

  14. 14

    V. Noireaux, Y.T. Maeda, A. Libchaber, Proc. Natl. Acad. Sci. U.S.A. 108, 3473 (2011)

    ADS  Article  Google Scholar 

  15. 15

    Z. Nourian, W. Roelofsen, C. Danelon, Angew. Chem. 124, 3168 (2012)

    Article  Google Scholar 

  16. 16

    X. Zhang, P. Tanner, A. Graff, C.G. Palivan, W. Meier, J. Polym. Sci. Part A: Polym. Chem. 50, 2293 (2012)

    ADS  Article  Google Scholar 

  17. 17

    D. van Swaay, Lab Chip 13, 752 (2013)

    Article  Google Scholar 

  18. 18

    G.M. Whitesides, Nature 442, 368 (2006)

    ADS  Article  Google Scholar 

  19. 19

    P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Lab Chip 6, 437 (2006)

    Article  Google Scholar 

  20. 20

    R.K. Shah, H.C. Shum, A.C. Rowat, D. Lee, J.J. Agresti, A.S. Utada, L.Y. Chu, J.W. Kim, A. Fernandez-Nieves, C.J. Martinez et al., Mater. Today 11, 18 (2008)

    Article  Google Scholar 

  21. 21

    S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee, Lab Chip 8, 198 (2008)

    Article  Google Scholar 

  22. 22

    R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Rep. Progr. Phys. 75, 016601 (2012)

    ADS  Article  Google Scholar 

  23. 23

    J.C. Baret, Lab Chip 12, 422 (2012)

    Article  Google Scholar 

  24. 24

    R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K.A. Riske, R. Lipowsky, J. Phys.: Condens. Matter 18, S1151 (2006)

    ADS  Google Scholar 

  25. 25

    S. Teh, R. Khnouf, H. Fan, A. Lee, Biomicrofluidics 5, 44113 (2011)

    Article  Google Scholar 

  26. 26

    S. Deshpande, Y. Caspi, A.E. Meijering, C. Dekker, Nat. Commun. 7, (2016)

  27. 27

    D. Discher, A. Eisenberg, Science 297, 967 (2002)

    ADS  Article  Google Scholar 

  28. 28

    D.E. Discher, F. Ahmed, Annu. Rev. Biomed. Eng. 8, 323 (2006)

    Article  Google Scholar 

  29. 29

    D.E. Discher, V. Ortiz, G. Srinivas, M.L. Klein, Y. Kim, D. Christian, S. Cai, P. Photos, F. Ahmed, Progr. Polym. Sci. 32, 838 (2007)

    Article  Google Scholar 

  30. 30

    E. Lorenceau, A. Utada, D. Link, Langmuir 21, 9183 (2005)

    Article  Google Scholar 

  31. 31

    H.C. Shum, J.W. Kim, D.A. Weitz, J. Am. Chem. Soc. 130, 9543 (2008)

    Article  Google Scholar 

  32. 32

    J. Thiele, A.R. Abate, H.C. Shum, S. Bachtler, S. Förster, D.A. Weitz, Small 6, 1723 (2010)

    Article  Google Scholar 

  33. 33

    Y. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998)

    ADS  Article  Google Scholar 

  34. 34

    G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber, Annu. Rev. Biomed. Engin. 3, 335 (2001)

    Article  Google Scholar 

  35. 35

    Y.C. Tan, K. Hettiarachchi, M. Siu, Y.R. Pan, A.P. Lee, J. Am. Chem. Soc. 128, 5656 (2006)

    Article  Google Scholar 

  36. 36

    T. Foster, K.D. Dorfman, H.T. Davis, J. Colloid Interface Sci. 351, 140 (2010)

    Article  Google Scholar 

  37. 37

    A. Perro, C. Nicolet, J. Angly, S. Lecommandoux, J.F. Le Meins, A. Colin, Langmuir 27, 9034 (2011)

    Article  Google Scholar 

  38. 38

    S.H. Kim, H.C. Shum, J.W. Kim, J.C. Cho, D.A. Weitz, J. Am. Chem. Soc. 133, 15165 (2011)

    Article  Google Scholar 

  39. 39

    S.H. Kim, J. Nam, J.W. Kim, D.H. Kim, S.H. Han, D.a. Weitz, Lab Chip 13, 1351 (2013)

    Article  Google Scholar 

  40. 40

    K.Y.S. Huang, J.L. Bento, M.A. Stredney, O.J. Napoli, D.H. Adamson, Microfluidics Nanofluidics 18, 149 (2015)

    Article  Google Scholar 

  41. 41

    J.F. Le Meins, C. Schatz, S. Lecommandoux, O. Sandre, Mater. Today 16, 397 (2013)

    Article  Google Scholar 

Download references

Open access funding provided by Max Planck Society (or associated institution if applicable).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oliver Bäumchen.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petit, J., Polenz, I., Baret, J. et al. Vesicles-on-a-chip: A universal microfluidic platform for the assembly of liposomes and polymersomes. Eur. Phys. J. E 39, 59 (2016). https://doi.org/10.1140/epje/i2016-16059-8

Download citation

Keywords

  • Tips and Tricks