Skip to main content
Log in

Direct comparison of elastic incoherent neutron scattering experiments with molecular dynamics simulations of DMPC phase transitions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Neutron scattering techniques have been employed to investigate 1,2-dimyristoyl-sn -glycero-3-phosphocholine (DMPC) membranes in the form of multilamellar vesicles (MLVs) and deposited, stacked multilamellar-bilayers (MLBs), covering transitions from the gel to the liquid phase. Neutron diffraction was used to characterise the samples in terms of transition temperatures, whereas elastic incoherent neutron scattering (EINS) demonstrates that the dynamics on the sub-macromolecular length-scale and pico- to nano-second time-scale are correlated with the structural transitions through a discontinuity in the observed elastic intensities and the derived mean square displacements. Molecular dynamics simulations have been performed in parallel focussing on the length-, time- and temperature-scales of the neutron experiments. They correctly reproduce the structural features of the main gel-liquid phase transition. Particular emphasis is placed on the dynamical amplitudes derived from experiment and simulations. Two methods are used to analyse the experimental data and mean square displacements. They agree within a factor of 2 irrespective of the probed time-scale, i.e. the instrument utilized. Mean square displacements computed from simulations show a comparable level of agreement with the experimental values, albeit, the best match with the two methods varies for the two instruments. Consequently, experiments and simulations together give a consistent picture of the structural and dynamical aspects of the main lipid transition and provide a basis for future, theoretical modelling of dynamics and phase behaviour in membranes. The need for more detailed analytical models is pointed out by the remaining variation of the dynamical amplitudes derived in two different ways from experiments on the one hand and simulations on the other.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Mouritsen, Life as a Matter of Fat (Springer, 2005)

  2. W.F.D. Bennett, D.P. Tieleman, Biochim. Biophys. Acta 1828, 1765 (2013) and references therein

    Article  Google Scholar 

  3. D.P. Tieleman, S.J. Marrink, H.J.C. Berendsen, Biochim. Biophys. Acta 1331, 235 (1997) and references therein

    Article  Google Scholar 

  4. O.G. Mouritsen, K. Jorgensen, Curr. Opin. Struct. Biol. 7, 518 (1997)

    Article  Google Scholar 

  5. J.S. Hub, T. Salditt, M.C. Rheinstädter, B.L. de Groot, Biophys. J. 93, 3156 (2007)

    Article  ADS  Google Scholar 

  6. C.F. Majkrzak, N.F. Berk, S. Krueger, J.A. Dura, M. Tarek, D. Tobias, V. Silin, C.W. Meuse, J. Woodward, A.L. Plant, Biophys. J. 79, 3330 (2000)

    Article  Google Scholar 

  7. M. Tarek, D.J. Tobias, S.-H. Chen, M.L. Klein, Phys. Rev. Lett. 87, 238101 (2001)

    Article  ADS  Google Scholar 

  8. T. Heimburg, Biophys. J. 78, 1154 (2000)

    Article  ADS  Google Scholar 

  9. J.R. Trudell, D.G. Payan, J.H. Chin, E.N. Cohen, Proc. Nat. Acad. Sci. U.S.A. 72, 210 (1975)

    Article  ADS  Google Scholar 

  10. A. Macdonald, Biochim. Biophys. Acta 507, 26 (1978)

    Article  Google Scholar 

  11. J. Nagle, D. Wilkinson, Biophys. J. 23, 159 (1978)

    Article  Google Scholar 

  12. P. Brocca, L. Cantu, M. Corti, E. Del Favero, S. Motta, M.C. Nodari, Colloids Surf. A. 291, 63 (2006)

    Article  Google Scholar 

  13. H. Ichimori, T. Hata, H. Matsuki, S. Kaneshina, Biochim. Biophys. Acta 1414, 165 (1998)

    Article  Google Scholar 

  14. S. Krishna Prasad, R. Shashidhar, B. Gaber, S. Chandrasekhar, Chem. Phys. Lipids 43, 227 (1987)

    Article  Google Scholar 

  15. H.H. Mantsch, R.N. McElhaney, Chem. Phys. Lipids 57, 213 (1991)

    Article  Google Scholar 

  16. R. Winter, W. Dzwolak Philos. Trans. Royal Soc. A: Math. Phys. Engin. Sci. 3635372005

    Article  Google Scholar 

  17. R. Winter, C. Jeworrek, Soft Matter 5, 3157 (2009)

    Article  ADS  Google Scholar 

  18. C. Sennoga, A. Heron, J.M. Seddon, R.H. Templer, B. Hankamer, Acta Crystallogr. D 59, 239 (2003)

    Article  Google Scholar 

  19. T. Salditt, C. Münster, U. Mennicke, C. Ollinger, G. Fragneto, Langmuir 19, 7703 (2003)

    Article  Google Scholar 

  20. H.P. Wacklin, Curr. Opin. Colloid Interface Sci. 15, 445 (2010)

    Article  Google Scholar 

  21. E. Dufourc, NMR of Lipids, Wiley Encyclopedia of Chemical Biology (John Wiley & Son, 2008)

  22. J. Phillips et al., J. Comput. Chem. 26, 1781 (2005)

    Article  Google Scholar 

  23. J.B. Klauda et al., J. Phys. Chem. B 114, 7830 (2010)

    Article  Google Scholar 

  24. L. Rusevich et al., Eur. Phys. J. E 36, 80 (2013)

    Article  Google Scholar 

  25. N. Kucerka, Y. Liu, N. Chu, H.I. Petrache, S. Tristram-Nagle, J.F. Nagle, Biophys. J. 88, 2626 (2005)

    Article  Google Scholar 

  26. C.L. Armstrong, M.A. Barrett, L. Toppozini, N. Kucerka, Z. Yamani, J. Katsaras, G. Fragneto, M.C. Rheinstädter, Soft Matter 8, 4687 (2012)

    Article  ADS  Google Scholar 

  27. A. Blume, Biochemistry 22, 5436 (1983)

    Article  Google Scholar 

  28. S. Leekumjorn, A.K. Sum, Biochim. Biophys. Acta 1768, 354 (2007)

    Article  Google Scholar 

  29. R. Koynova, B.G. Tenchov, S. Todinova, P.J. Quinn, Biophys. J. 68, 2370 (1995)

    Article  ADS  Google Scholar 

  30. H.H. Chang, R.K. Bhagat, R. Tran, P. Dea, J. Phys. Chem. B 110, 22192 (2006)

    Article  Google Scholar 

  31. M. Trapp, T. Gutberlet, F. Juranyi, T. Unruh, B. Demé, M. Tehei, J. Peters, J. Chem. Phys. 133, 164505 (2010)

    Article  ADS  Google Scholar 

  32. W. Pfeiffer, T. Henkel, E. Sackmann, W. Knoll, D. Richter, Europhys. Lett. 8, 201 (1989)

    Article  ADS  Google Scholar 

  33. S. König, W. Pfeiffer, T. Bayerl, D. Richter, E. Sackmann, J. Phys. II 2, 1589 (1992)

    Google Scholar 

  34. S. König, E. Sackmann, D. Richter, R. Zorn, C. Carlile, T.M. Bayerl, J. Chem. Phys. 100, 3307 (1994)

    Article  ADS  Google Scholar 

  35. E. Falck, T. Rog, M. Karttunen, I. Vattulainen, J. Am. Chem. Soc. 130, 44 (2008)

    Article  Google Scholar 

  36. S. Busch, C. Smuda, L.C. Pardo, T. Unruh, J. Am. Chem. Soc. 132, 3232 (2010)

    Article  Google Scholar 

  37. G.R. Kneller, K. Baczynski, M. Pasenkiewicz-Gierula, J. Chem. Phys. 135, 141105 (2011)

    Article  ADS  Google Scholar 

  38. C.L. Armstrong, M. Trapp, J. Peters, T. Seydel, M.C. Rheinstädter, Soft Matter 7, 8358 (2011)

    Article  ADS  Google Scholar 

  39. S. Tristram-Nagle, Y. Liu, J. Legleiter, John F. Nagle, Biophys. J. 83, 3324 (2002)

    Article  ADS  Google Scholar 

  40. http://www.ill.eu/instruments-support/instruments-groups/instruments/d16/characteristics/

  41. M.J. Janiak, D.M. Small, G.G. Shipley, J. Biol. Chem. 254, 6068 (1979)

    Google Scholar 

  42. F. Natali, J. Peters, D. Russo, S. Barbieri, C. Chiapponi, A. Cupane, A. Deriu, M.T. Di Bari, E. Farhi, Y. Gerelli, P. Mariani, A. Paciaroni, C. Rivessau, G. Schiro’, F. Sonvico, Neutron News 19, 14 (2008)

    Google Scholar 

  43. http://www.ill.eu/instruments-support/instruments-groups/instruments/in6/description/instrument-layout/

  44. A. Rahman, K.S. Singwi, A. Sjölander, Phys. Rev. 126, 986 (1962)

    Article  ADS  Google Scholar 

  45. M. Tehei, R. Daniel, G. Zaccai, Eur. Biophys. J. 35, 551 (2006)

    Article  Google Scholar 

  46. F. Natali, C. Castellano, D. Pozzi, A. Congiu Castellano, Biophys. J. 88, 1081 (2005)

    Article  Google Scholar 

  47. J. Peters, G.R. Kneller, J. Chem. Phys. 139, 165102 (2013)

    Article  ADS  Google Scholar 

  48. http://www.charmm-gui.org/

  49. R.W. Pastor, R.M. Venable, S.E. Feller, Acc. Chem. Res. 35, 438 (2002)

    Article  Google Scholar 

  50. C.-J. Högberg, A.P. Lyubartsev, J. Phys. Chem. B. 110, 14326 (2006)

    Article  Google Scholar 

  51. U. Essmann et al., J. Chem. Phys. 103, 8577 (1995)

    Article  ADS  Google Scholar 

  52. H. Pfeiffer, H. Binder, G. Klose, K. Heremans, Biochim. Biophys. Acta 1609, 148 (2003)

    Article  Google Scholar 

  53. M. Trapp, F. Juranyi, M. Tehei, L. van Eijck, B. Demé, T. Gutberlet, J. Peters, Spectroscopy 24, 461 (2010)

    Article  Google Scholar 

  54. G.S. Smith, E.B. Sirota, C.R. Safinya, N.A. Clark, Phys. Rev. Lett. 60, 813 (1988)

    Article  ADS  Google Scholar 

  55. A.V. Popova, D.K. Hincha, BMC Biophys. 4, 11 (2011)

    Article  Google Scholar 

  56. A.M. Stadler, E. Pellegrini, M. Johnson, J. Fitter, G. Zaccai, Biophys. J. 102, 351 (2012)

    Article  ADS  Google Scholar 

  57. F. Natali, A. Relini, A. Gliozzi, R. Rolandi, P. Cavatorta, A. Deriu, A. Fasano, P. Riccio, Chem. Phys. 292, 455 (2003)

    Article  ADS  Google Scholar 

  58. Z. Yi, Y. Miao, J. Baudry, N. Jain, J.C. Smith, J. Phys. Chem. B 116, 5028 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Peters.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoun, B., Pellegrini, E., Trapp, M. et al. Direct comparison of elastic incoherent neutron scattering experiments with molecular dynamics simulations of DMPC phase transitions. Eur. Phys. J. E 39, 48 (2016). https://doi.org/10.1140/epje/i2016-16048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16048-y

Keywords

Navigation