Skip to main content
Log in

Characteristic length scales of the secondary relaxations in glass-forming glycerol

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We investigate the secondary relaxations and their link to the main structural relaxation in glass-forming liquids using glycerol as a model system. We analyze the incoherent neutron scattering signal dependence on the scattering momentum transfer, Q , in order to obtain the characteristic length scale for different secondary relaxations. Such a capability of neutron scattering makes it somewhat unique and highly complementary to the traditional techniques of glass physics, such as light scattering and broadband dielectric spectroscopy, which provide information on the time scale, but not the length scales, of relaxation processes. The choice of suitable neutron scattering techniques depends on the time scale of the relaxation of interest. We use neutron backscattering to identify the characteristic length scale of 0.7 Å for the faster secondary relaxation described in the framework of the mode-coupling theory (MCT). Neutron spin-echo is employed to probe the slower secondary relaxation of the excess wing type at a low temperature ( ∼ 1.13T g . The characteristic length scale for this excess wing dynamics is approximately 4.7 Å. Besides the Q -dependence, the direct coupling of neutron scattering signal to density fluctuation makes this technique indispensable for measuring the length scale of the microscopic relaxation dynamics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Paster, W.S. Ryu, Proc. Natl. Acad. Sci. U.S.A. 105, 5373 (2008)

    Article  ADS  Google Scholar 

  2. I. Cho, S.H. Kim, J.H. Kim, S. Park, S.Y. Park, J. Mater. Chem. 22, 123 (2012)

    Article  Google Scholar 

  3. S. Kundu, S. Gupta, J. Stellbrink, L. Willner, D. Richter, Eur. Phys. J. ST 222, 2757 (2013)

    Article  Google Scholar 

  4. S. Gupta, M. Camargo, J. Stellbrink, J. Allgaier, A. Radulescu, P. Lindner, E. Zaccarelli, C.N. Likos, D. Richter, Nanoscale 7, 13924 (2015)

    Article  ADS  Google Scholar 

  5. S. Gupta, J. Stellbrink, E. Zaccarelli, C.N. Likos, M. Camargo, P. Holmqvist, J. Allgaier, L. Willner, D. Richter, Phys. Rev. Lett. 115, 128302 (2015)

    Article  ADS  Google Scholar 

  6. P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl, Contemp. Phys. 41, 15 (2000)

    Article  ADS  Google Scholar 

  7. P. Lunkenheimer, A. Loidl, Chem. Phys. 284, 205 (2002)

    Article  ADS  Google Scholar 

  8. M. Domschke, M. Marsilius, T. Blochowicz, T. Voigtmann, Phys. Rev. E 84, 031506 (2011)

    Article  ADS  Google Scholar 

  9. N. Petzold, B. Schmidtke, R. Kahlau, D. Bock, R. Meier, B. Micko, D. Kruk, E.A. Rossler, J. Chem. Phys. 138, 12A510 (2013)

    Article  Google Scholar 

  10. L. Berthier, G. Biroli, J.P. Bouchaud, L. Cipelletti, W.V. Saarloos, Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Oxford University Press, Oxford, 2011)

  11. C. Brun, F. Ladieu, D. L’Hote, M. Tarzia, G. Biroli, J.P. Bouchaud, Phys. Rev. B 84, 104204 (2011)

    Article  ADS  Google Scholar 

  12. A. Hofmann, F. Kremer, E.W. Fischer, A. Schönhals, in Disorder Effects on Relaxational Processes, edited by R. Richert, A. Blumen (Springer, Berlin, 1994)

  13. R.L. Leheny, S.R. Nagel, Europhys. Lett. 39, 447 (1997)

    Article  ADS  Google Scholar 

  14. U. Schneider, P. Lunkenheimer, R. Brand, A. Loidl, Phys. Rev. E 59, 6924 (1999)

    Article  ADS  Google Scholar 

  15. S. Gupta, N. Arend, P. Lunkenheimer, A. Loidl, L. Stingaciu, N. Jalarvo, E. Mamontov, M. Ohl, Eur. Phys. J. E 38, 1 (2015)

    Article  Google Scholar 

  16. G.P. Johari, M. Goldstein, J. Chem. Phys. 53, 2372 (1970)

    Article  ADS  Google Scholar 

  17. A. Kudlik, S. Benkhof, T. Blochowicz, C. Tschirwitz, E. Rossler, J. Mol. Struct. 479, 201 (1999)

    Article  ADS  Google Scholar 

  18. S. Kastner, M. Koehler, Y. Goncharov, P. Lunkenheimer, A. Loidl, J. Non-Cryst. Solids 357, 510 (2011)

    Article  ADS  Google Scholar 

  19. W. Götze, edited by J.P. Hansen, D. Levesque, J. Zinn-Justin, Liquids, Freezing and Glass Transition, Vol. I (North-Holland, Amsterdam, 1991)

  20. W. Götze, L. Sjögren, Rep. Progr. Phys. 55, 241 (1992)

    Article  Google Scholar 

  21. G. Li, W.M. Du, X.K. Chen, H.Z. Cummins, N.J. Tao, Phys. Rev. A 45, 3867 (1992)

    Article  ADS  Google Scholar 

  22. G. Li, W.M. Du, A. Sakai, H.Z. Cummins, Phys. Rev. A 46, 3343 (1992)

    Article  ADS  Google Scholar 

  23. H.Z. Cummins, W.M. Du, M. Fuchs, W. Götze, S. Hildebrand, A. Latz, G. Li, N.J. Tao, Phys. Rev. E 47, 4223 (1993)

    Article  ADS  Google Scholar 

  24. J. Wuttke, J. Hernandez, G. Li, G. Coddens, H.Z. Cummins, F. Fujara, W. Petry, H. Sillescu, Phys. Rev. Lett. 72, 3052 (1994)

    Article  ADS  Google Scholar 

  25. J. Wuttke, M. Ohl, M. Goldammer, S. Roth, U. Schneider, P. Lunkenheimer, R. Kahn, B. Ruffle, R. Lechner, M.A. Berg, Phys. Rev. E 61, 2730 (2000)

    Article  ADS  Google Scholar 

  26. M. Kohler, P. Lunkenheimer, Y. Goncharov, A. Loidl, Phys. Rev. E 87, 062320 (2013)

    Article  ADS  Google Scholar 

  27. T. Blochowicz, C. Tschirwitz, S. Benkhof, E.A. Rossler, J. Chem. Phys. 118, 7544 (2003)

    Article  ADS  Google Scholar 

  28. Y. Kaneko, J. Bosse, J. Non-Cryst. Solids 207, 472 (1996)

    Article  ADS  Google Scholar 

  29. V. Krakoviack, Phys. Rev. Lett. 94, 065703 (2005)

    Article  ADS  Google Scholar 

  30. S.H. Chong, W. Götze, A.P. Singh, Phys. Rev. E 63, 011206 (2001)

    Article  ADS  Google Scholar 

  31. T. Blochowicz, S. Schramm, S. Lusceac, M. Vogel, B. Stuhn, P. Gutfreund, B. Frick, Phys. Rev. Lett. 109, 035702 (2012)

    Article  ADS  Google Scholar 

  32. K. Kim, K. Miyazaki, S. Saito, Eur. Phys. J. ST 189, 135 (2010)

    Article  Google Scholar 

  33. E. Mamontov, P. Zolnierczuk, M. Ohl, Phys. Chem. Chem. Phys. 17, 4466 (2015)

    Article  Google Scholar 

  34. E. Mamontov, M. Ohl, Phys. Chem. Chem. Phys. 15, 10732 (2013)

    Article  Google Scholar 

  35. F.H. Stillinger, Science 267, 1935 (1995)

    Article  ADS  Google Scholar 

  36. J.S. Harmon, M.D. Demetriou, W.L. Johnson, K. Samwer, Phys. Rev. Lett. 99, 135502 (2007)

    Article  ADS  Google Scholar 

  37. R.V. Chamberlin, Phys. Rev. Lett. 82, 2520 (1999)

    Article  ADS  Google Scholar 

  38. K.L. Ngai, J. Phys.: Condens. Matter 15, S1107 (2003)

    ADS  Google Scholar 

  39. W. Götze, M. Sperl, Phys. Rev. Lett. 92, 105701 (2004)

    Article  ADS  Google Scholar 

  40. U. Schneider, R. Brand, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 84, 5560 (2000)

    Article  ADS  Google Scholar 

  41. A. Doss, M. Paluch, H. Sillescu, G. Hinze, Phys. Rev. Lett. 88, 095701 (2002)

    Article  ADS  Google Scholar 

  42. K.L. Ngai, P. Lunkenheimer, C. Leon, U. Schneider, R. Brand, A. Loidl, J. Chem. Phys. 115, 1405 (2001)

    Article  ADS  Google Scholar 

  43. S. Hensel-Bielowka, M. Paluch, Phys. Rev. Lett. 89, 025704 (2002)

    Article  ADS  Google Scholar 

  44. C. Gainaru, R. Kahlau, E.A. Rossler, R. Bohmer, J. Chem. Phys. 131, 184510 (2009)

    Article  ADS  Google Scholar 

  45. H.Z. Cummins, G. Li, W.M. Du, R.M. Pick, C. Dreyfus, Phys. Rev. E 53, 896 (1996)

    Article  ADS  Google Scholar 

  46. M.J. Lebon, C. Dreyfus, Y. Guissani, R.M. Pick, H.Z. Cummins, Z. Phys. B 103, 433 (1997)

    Article  ADS  Google Scholar 

  47. L. Comez, D. Fioretto, L. Palmieri, L. Verdini, P.A. Rolla, J. Gapinski, T. Pakula, A. Patkowski, W. Steffen, E.W. Fischer, Phys. Rev. E 60, 3086 (1999)

    Article  ADS  Google Scholar 

  48. A. Brodin, R. Bergman, J. Mattsson, E.A. Rossler, Eur. Phys. J. B 36, 349 (2003)

    Article  ADS  Google Scholar 

  49. R. Schilling, T. Scheidsteger, Phys. Rev. E 56, 2932 (1997)

    Article  ADS  Google Scholar 

  50. W. Götze, T. Voigtmann, Phys. Rev. E 61, 4133 (2000)

    Article  ADS  Google Scholar 

  51. P. Lunkenheimer, A. Pimenov, M. Dressel, Y.G. Goncharov, R. Bohmer, A. Loidl, Phys. Rev. Lett. 77, 318 (1996)

    Article  ADS  Google Scholar 

  52. E. Mamontov, K.W. Herwig, Rev. Sci. Instrum. 82, 085109 (2011)

    Article  ADS  Google Scholar 

  53. M. Ohl, M. Monkenbusch, D. Richter, C. Pappas, K. Lieutenant, T. Krist, G. Zsigmond, F. Mezei, Physica B 350, 147 (2004)

    Article  ADS  Google Scholar 

  54. O. Arnold et al., Nucl. Instrum. Methods Phys. Res. A 764, 156 (2014)

    Article  ADS  Google Scholar 

  55. B. Farago, in Neutron Spin Echo Spectroscopy, Lecture Notes in Physics 601 (Springer, Heidelberg, 2003)

  56. M. Monkenbusch, in Neutron Spin Echo Spectroscopy, Lecture Notes in Physics 601 (Springer, Heidelberg, 2003)

  57. D. Richter, M. Monkenbusch, A. Arbe, J. Colmenero, Adv. Polym. Sci. 174, 1 (2005)

    ADS  Google Scholar 

  58. J. Wuttke, W. Petry, G. Coddens, F. Fujara, Phys. Rev. E 52, 4026 (1995)

    Article  ADS  Google Scholar 

  59. J. Wuttke, W. Petry, S. Pouget, J. Chem. Phys. 105, 5177 (1996)

    Article  ADS  Google Scholar 

  60. I. Chang, H. Sillescu, J. Phys. Chem. B 101, 8794 (1997)

    Article  Google Scholar 

  61. J.B. Segur, H.E. Oberstar, Indust. Engin. Chem. 43, 2117 (1951)

    Article  Google Scholar 

  62. R. Kohlrausch, Ann. Phys. 167, 179 (1854)

    Article  Google Scholar 

  63. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)

    Article  Google Scholar 

  64. C.T. Moynihan, L.P. Boesch, N.L. Laberge, Phys. Chem. Glasses 14, 122 (1973)

    Google Scholar 

  65. F. Sciortino, W. Kob, Phys. Rev. Lett. 86, 648 (2001)

    Article  ADS  Google Scholar 

  66. M. Bée, Quasielastic neutron scattering, Principles and applications in solid state chemistry, biology and materials science (Hilger, Bristol, 1988)

  67. E. Mamontov, Chem. Phys. Lett. 530, 55 (2012)

    Article  ADS  Google Scholar 

  68. J. Wuttke, Algorithms 5, 604 (2012)

    Article  Google Scholar 

  69. J. Qvist, H. Schober, B. Halle, J. Chem. Phys. 134, 144508 (2011)

    Article  ADS  Google Scholar 

  70. T. Franosch, M. Fuchs, W. Götze, M.R. Mayr, A.P. Singh, Phys. Rev. E 56, 5659 (1997)

    Article  ADS  Google Scholar 

  71. L.C. Pardo, P. Lunkenheimer, A. Loidl, Phys. Rev. E 76, 030502 (2007)

    Article  ADS  Google Scholar 

  72. H. Cang, V.N. Novikov, M.D. Fayer, Phys. Rev. Lett. 90, 197401 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Mamontov, E., Jalarvo, N. et al. Characteristic length scales of the secondary relaxations in glass-forming glycerol. Eur. Phys. J. E 39, 40 (2016). https://doi.org/10.1140/epje/i2016-16040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16040-7

Keywords

Navigation