Skip to main content
Log in

Phase and precession evolution in the Burgers equation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present a phenomenological study of the phase dynamics of the one-dimensional stochastically forced Burgers equation, and of the same equation under a Fourier mode reduction on a fractal set. We study the connection between coherent structures in real space and the evolution of triads in Fourier space. Concerning the one-dimensional case, we find that triad phases show alignments and synchronisations that favour energy fluxes towards small scales --a direct cascade. In addition, strongly dissipative real-space structures are associated with entangled correlations amongst the phase precession frequencies and the amplitude evolution of Fourier triads. As a result, triad precession frequencies show a non-Gaussian distribution with multiple peaks and fat tails, and there is a significant correlation between triad precession frequencies and amplitude growth. Links with dynamical systems approach are briefly discussed, such as the role of unstable critical points in state space. On the other hand, by reducing the fractal dimension D of the underlying Fourier set, we observe: i) a tendency toward a more Gaussian statistics, ii) a loss of alignment of triad phases leading to a depletion of the energy flux, and iii) the simultaneous reduction of the correlation between the growth of Fourier mode amplitudes and the precession frequencies of triad phases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, 1994)

  2. M. Cencini, F. Cecconi, M. Vulpiani, Chaos: From Simple Models to Complex Systems. Series on Advances in Statistical Mechanics, Vol. 17 (World Scientific, 2010)

  3. H.F. Weinberger, A First Course in Partial Differential Equations With Complex Variables and Transform Methods (Dover Publications, Inc., 1965)

  4. J. Bec, K. Khanin, Phys. Rep. 447, 1 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. Gerald Beresford Whitham Linear and Nonlinear Waves, Vol. 42 (John Wiley & Sons, 2011)

  6. A.L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, 1995)

  7. E. Hopf, Commun. Pure Appl. Math. 3, 201 (1950)

    Article  MathSciNet  Google Scholar 

  8. J.D. Cole, Q. Appl. Math. 9, 225 (1951)

    Google Scholar 

  9. Ya.B. Zeldovich, Astron. Astrophys. 5, 84 (1970)

    ADS  Google Scholar 

  10. S.N. Gurbatov, A.I. Saichev, S.F. Shandarin, Month. Not. R. Astron. Soc. 236, 385 (1989)

    Article  ADS  Google Scholar 

  11. Z.S. She, E. Aurell, U. Frisch, Commun. Math. Phys. 148, 623 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Vergassola, B. Dubrulle, U. Frisch, A. Noullez, Astron. Astrophys. 289, 325 (1994)

    ADS  Google Scholar 

  13. E. Aurell, U. Frisch, A. Noullez, M. Blank, J. Stat. Phys. 88, 1151 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Benzi, L. Biferale, R. Fisher, D.Q. Lamb, F. Toschi, J. Fluid Mech. 653, 221 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. L. Biferale, G. Boffetta, A. Celani, A.S. Lanotte, F. Toschi, Phys. Fluids 17, 021701 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. A.S. Lanotte, L. Biferale, G. Boffetta, F. Toschi, J. Turbul. 14, 34 (2013)

    Article  ADS  Google Scholar 

  17. L. Biferale, G. Boffetta, A. Celani, B. Devenish, A. Lanotte, F. Toschi, Phys. Rev. Lett. 93, 064502 (2004)

    Article  ADS  Google Scholar 

  18. W. Woyczyski, Burgers-KPZ Turbulence: Gottingen Lectures (Springer-Verlag, New York, 1998)

  19. M.D. Bustamante, Physica D 240, 1092 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. U. Frisch, Turbulence: The Legacy of AN Kolmogorov (Cambridge University Press, 1995)

  21. S.B. Pope, Turbulent Flows (Cambridge University Press, 2000)

  22. M.D. Bustamante, B. Quinn, D. Lucas, Phys. Rev. Lett. 113, 084502 (2014)

    Article  ADS  Google Scholar 

  23. M. Buzzicotti, L. Biferale, U. Frisch, S.S. Ray, arXiv:1601.03697 (2016)

  24. R.H. Kraichnan, Phys. Fluids (1958-1988) 10, 1417 (1967)

    Article  Google Scholar 

  25. R.H. Kraichnan, J. Fluid Mech. 47, 525 (1971)

    Article  ADS  Google Scholar 

  26. H.A. Rose, P.L. Sulem, J. Phys. (Paris) 39, 441 (1978)

    Article  MathSciNet  Google Scholar 

  27. Koji Ohkitani, Shigeo Kida, Physics Fluids A: Fluid Dyn. (1989-1993) 4, 794 (1992)

    Article  Google Scholar 

  28. U. Frisch, A. Pomyalov, I. Procaccia, S.S. Ray, Phys. Rev. Lett. 108, 074501 (2012)

    Article  ADS  Google Scholar 

  29. S.S. Ray, Pramana J. Phys. 84, 395 (2015)

    Article  ADS  Google Scholar 

  30. A.S. Lanotte, R. Benzi, S. Malapaka, F. Toschi, L. Biferale, Phys Rev. Lett. 115, 264502 (2015)

    Article  ADS  Google Scholar 

  31. E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel D. Bustamante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzzicotti, M., Murray, B., Biferale, L. et al. Phase and precession evolution in the Burgers equation. Eur. Phys. J. E 39, 34 (2016). https://doi.org/10.1140/epje/i2016-16034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16034-5

Keywords

Navigation