Skip to main content
Log in

Thermophysical effects of water driven copper nanoparticles on MHD axisymmetric permeable shrinking sheet: Dual-nature study

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The present study is dedicated to analyze the dual-nature solutions of the axisymmetric flow of a magneto-hydrodynamics (MHD) nanofluid over a permeable shrinking sheet. In those phenomena where the fluid flow is due to the shrinking surface, some reverse behaviors of the flow arise because of vorticity effects. Despite of heat transfer analysis, the main purpose of the present study is to attain the solutions of the complex nature problem that appear in reverse flow phenomena. Thermophysical properties of both base fluid (water) and nanoparticles (copper) are also taken into account. By means of similarity transformation, partial differential equations are converted into a system of coupled nonlinear ordinary differential equations and then solved via the Runge-Kutta method. These results are divided separately into two cases: the first one is the unidirectional shrinking along the surface (m = 1) and the other one is for axisymmetric shrinking phenomena (m = 2) . To enhance the thermal conductivity of base fluid, nanoparticle volume fractions (\(0\le \phi\le 0.2\)) are incorporated within the base fluid. The numerical investigation explores the condition of existence, non-existence and the duality of similarity solution depends upon the range of suction parameter (S) and Hartmann number (M). The reduced skin friction coefficient and local Nusselt number are plotted to analyze the fluid flow and heat transfer at the surface of the shrinking sheet. Streamlines and isotherms are also plotted against the engineering control parameters to analyze the flow behavior and heat transfer within the whole domain. Throughout this analysis it is found that both nanoparticle volume fraction and Hartmann number are increasing functions of both skin friction coefficient and Nusselt number.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD, Vol. 66 (1995) pp. 99--105

  2. L. Cheng, Recent Patents Engin. 3, 1 (2009)

    Article  Google Scholar 

  3. J. Buongiorno, ASME J. Heat Transfer 128, 240 (2006)

    Article  Google Scholar 

  4. M. Miklavcic, C.Y. Wang, Q. Appl. Math. 64, 283 (2006)

    Article  MathSciNet  Google Scholar 

  5. C.Y. Wang, Int. J. Nonlinear Mech. 43, 377 (2008)

    Article  ADS  Google Scholar 

  6. Y.Y. Lok, A. Ishak, I. Pop, Int. J. Numer. Methods Heat Fluid Flow 21, 61 (2011)

    Article  Google Scholar 

  7. K. Bhattacharyya, S. Mukhopadhyay, G.C. Layek, Int. J. Heat Mass Transfer 54, 302 (2011)

    Article  Google Scholar 

  8. K. Bhattacharyya, Int. Commun. Heat Mass Transfer 38, 917 (2011)

    Article  Google Scholar 

  9. N.C. Rosca, T. Grason, I. Pop, Sains Malaysiana 41, 1271 (2012)

    Google Scholar 

  10. D.A. Nield, A.V. Kuznetsov, Int. J. Heat Mass Transfer 52, 5792 (2009)

    Article  Google Scholar 

  11. A.V. Kuznetsov, D.A. Nield, Int. J. Thermal Sci. 50, 712 (2011)

    Article  Google Scholar 

  12. W.A. Khan, I. Pop, Int. J. Heat Mass Transfer 53, 2477 (2010)

    Article  Google Scholar 

  13. N. Bachok, A. Ishak, I. Pop, Int. J. Heat Mass Transfer 55, 2101 (2012)

    Google Scholar 

  14. A.M. Rohni, S. Ahmad, A.I. Ismail, I. Pop, Int. Commun. Heat Mass Transfer 43, 75 (2013)

    Article  Google Scholar 

  15. S.K. Nandy, T.R. Mahapatra, Int. J. Heat Mass Transfer 64, 1091 (2013)

    Article  Google Scholar 

  16. Rizwan Ul Haq, Zakia Hammouch, Waqar Ahmed Khan, Thermal Science, DOI:10.2298/TSCI141102148H (2015)

  17. N.F.M. Noor, Rizwan Ul Haq, S. Nadeem, I. Hashim, Meccanica 50, 2007 (2015)

    Article  MathSciNet  Google Scholar 

  18. Wubshet Ibrahim, Rizwan Ul Haq, J. Brazil. Soc. Mech. Sci. Engin., DOI:10.1007/s40430-015-0347-z (2015)

  19. W.A. Khan, Z.H. Khan, Rizwan Ul Haq, Eur. Phys. J. Plus 130, 86 (2015)

    Article  Google Scholar 

  20. Rizwan Ul Haq, S. Nadeem, Z.H. Khan, N.F.M. Noor, Physica E 73, 45 (2015)

    Article  ADS  Google Scholar 

  21. B.K. Dutta, P. Roy, A.S. Gupta, Int. Commun. Heat Mass Transfer 12, 89 (1985)

    Article  Google Scholar 

  22. T. Ray Mahapatra, A.S. Gupta, Heat Mass Transfer 38, 517 (2002)

    Article  ADS  Google Scholar 

  23. N.F.M. Noor, S.A. Kechil, I. Hashim, Commun. Nonlinear Sci. Numer. Simulat. 15, 144 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Ul Haq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ul Haq, R., Rajotia, D. & Noor, N.F.M. Thermophysical effects of water driven copper nanoparticles on MHD axisymmetric permeable shrinking sheet: Dual-nature study. Eur. Phys. J. E 39, 33 (2016). https://doi.org/10.1140/epje/i2016-16033-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16033-6

Keywords

Navigation