Skip to main content

Internal tension in a collapsed polymer under shear flow and the connection to enzymatic cleavage of von Willebrand factor

Abstract.

By means of Brownian hydrodynamics simulations we show that the tension distribution along the contour of a single collapsed polymer in shear flow is inhomogeneous and above a threshold shear rate exhibits a double-peak structure when hydrodynamic interactions are taken into account. We argue that the tension maxima close to the termini of the polymer chain reflect the presence of polymeric protrusions. We establish the connection to shear-induced globule unfolding and determine the scaling behavior of the maximal tensile forces and the average protrusion length as a function of shear rate, globule size, and cohesive strength. A quasi-equilibrium theory is employed in order to describe the simulation results. Our results are used to explain experimental data for the shear-sensitive enzymatic degradation of von Willebrand factor.

Graphical abstract

References

  1. Alfredo Alexander-Katz, Macromolecules 47, 1503 (2014)

    ADS  Article  Google Scholar 

  2. J. Evan Sadler, Annu. Rev. Biochem. 67, 395 (1998) PMID: 9759493

    Article  Google Scholar 

  3. R. Schneppenheim, U. Budde, J. Thromb. Haemost. 9, 209 (2011) PMID: 21781257

    Article  Google Scholar 

  4. T.A. Springer, J. Thromb. Haemost. 9, 130 (2011)

    Article  Google Scholar 

  5. A. Alexander-Katz, M.F. Schneider, S. Schneider, A. Wixforth, R.R. Netz, Phys. Rev. Lett. 97, 138101 (2006)

    ADS  Article  Google Scholar 

  6. A. Alexander-Katz, R.R. Netz, Macromolecules 41, 3363 (2008)

    ADS  Article  Google Scholar 

  7. C.E. Sing, A. Alexander-Katz, Biophys. J. 98, L35 (2010)

    Article  Google Scholar 

  8. Z.M. Ruggeri, Blood 108, 1903 (2006)

    Article  Google Scholar 

  9. S.W. Schneider, S. Nuschele, A. Wixforth, C. Gorzelanny, A. Alexander-Katz, R.R. Netz, M.F. Schneider, Proc. Natl. Acad. Sci. U.S.A. 104, 7899 (2007)

    ADS  Article  Google Scholar 

  10. Matthias Radtke, Roland Netz, Eur. Phys. J. E 37, 20 (2014)

    Article  Google Scholar 

  11. C.E. Sing, J.G. Selvidge, A. Alexander-Katz, Biophys. J. 105, 1475 (2013)

    ADS  Article  Google Scholar 

  12. Matthias Radtke, Roland R. Netz, Eur. Phys. J. E 38, 69 (2015)

    Article  Google Scholar 

  13. X. Zhang, K. Halvorsen, C.-Z. Zhang, W.P. Wong, T.A. Springer, Science 324, 1330 (2009)

    ADS  Article  Google Scholar 

  14. C. Baldauf, R. Schneppenheim, W. Stacklies, T. Obser, A. Pieconka, S. Schneppenheim, U. Budde, J. Zhou, F. Gräter, J. Thromb. Haemos. 7, 2096 (2009)

    Article  Google Scholar 

  15. Hans Ulrichts, Miklós Udvardy, Peter J. Lenting, Inge Pareyn, Nele Vandeputte, Karen Vanhoorelbeke, Hans Deckmyn, J. Biol. Chem. 281, 4699 (2006) PMID: 16373331

    Article  Google Scholar 

  16. Camilo Aponte-Santamaría, Volker Huck, Sandra Posch, Agnieszka K. Bronowska, Sandra Grässle, Maria A. Brehm, Tobias Obser, Reinhard Schneppenheim, Peter Hinterdorfer, Stefan W. Schneider, Carsten Baldauf, Frauke Gräter, Biophys. J. 108, 2312 (2015)

    Article  Google Scholar 

  17. Zaverio M. Ruggeri, Nat. Med. 8, 1227 (2002)

    Article  Google Scholar 

  18. Shaun P. Jackson, Blood 109, 5087 (2007) PMID: 17311994

    Article  Google Scholar 

  19. H. Chen, M.A. Fallah, V. Huck, J.I. Angerer, A.J. Reininger, S.W. Schneider, M.F. Schneider, A. Alexander-Katz, Nat. Commun. 4, 1333 (2013)

    ADS  Article  Google Scholar 

  20. Hsieh Chen, Alfredo Alexander-Katz, Soft Matter 9, 10381 (2013)

    Article  Google Scholar 

  21. J.E. Sadler, Blood 112, 11 (2008)

    Article  Google Scholar 

  22. Han-Mou Tsai, Int. J. Hematol. 91, 1 (2010)

    Article  Google Scholar 

  23. Volker Huck, Matthias F. Schneider, Christian Gorzelanny, Stefan W. Schneider, Thromb. Haemost. 111, 598 (2014) PMID: 24573248

    Article  Google Scholar 

  24. M. Furlan, Ann. Hematol. 72, 341 (1996) PMID: 8767102

    Article  Google Scholar 

  25. Svenja Lippok, Tobias Obser, Jochen P. Müller, Valentin K. Stierle, Martin Benoit, Ulrich Budde, Reinhard Schneppenheim, Joachim O. Rädler, Biophys. J. 105, 1208 (2013)

    Article  Google Scholar 

  26. J.E. Sadler, Proc. Natl. Acad. Sci. U.S.A. 99, 11552 (2002)

    ADS  Article  Google Scholar 

  27. J.-f. Dong, Blood 100, 4033 (2002)

    Article  Google Scholar 

  28. Weiqiang Gao, Patricia J. Anderson, Elaine M. Majerus, Elodee A. Tuley, J. Evan Sadler, Proc. Natl. Acad. Sci. U.S.A. 103, 19099 (2006) PMID: 17146059 PMCID: PMC1681350

    ADS  Article  Google Scholar 

  29. Junyi Ying, Yingchen Ling, Lisa A. Westfield, J. Evan Sadler, Jin-Yu Shao, Biophys. J. 98, 1685 (2010)

    Article  Google Scholar 

  30. Svenja Lippok, Matthias Radtke, Tobias Obser, Lars Kleemeier, Reinhard Schneppenheim, Ulrich Budde, Roland R. Netz, Joachim O. Rädler, Biophys. J. 110, 545 (2016)

    Article  Google Scholar 

  31. Jens Rotne, Stephen Prager, J. Chem. Phys. 50, 4831 (1969)

    ADS  Article  Google Scholar 

  32. Hiromi Yamakawa, J. Chem. Phys. 53, 436 (1970)

    Article  Google Scholar 

  33. Theo GM Van de Ven, Colloidal hydrodynamics (Academic Press, 1989)

  34. J.F. Morrison, Biochim. Biophys. Acta Enzymol. 185, 269 (1969)

    Article  Google Scholar 

  35. T.R. Einert, C.E. Sing, A. Alexander-Katz, R.R. Netz, Eur. Phys. J. E 34, 130 (2011)

    Article  Google Scholar 

  36. W.E. Fowler, L.J. Fretto, K.K. Hamilton, H.P. Erickson, P.A. McKee, J. Clin. Investig. 76, 1491 (1985)

    Article  Google Scholar 

  37. I. Singh, H. Shankaran, M.E. Beauharnois, Z. Xiao, P. Alexandridis, S. Neelamegham, J. Biol. Chem. 281, 38266 (2006)

    Article  Google Scholar 

  38. Yan-Feng Zhou, Edward T. Eng, Noritaka Nishida, Chafen Lu, Thomas Walz, Timothy A. Springer, EMBO J. 30, 4098 (2011)

    Article  Google Scholar 

  39. W. Cao, S. Krishnaswamy, R.M. Camire, P.J. Lenting, X.L. Zheng, Proc. Natl. Acad. Sci. U.S.A. 105, 7416 (2008)

    ADS  Article  Google Scholar 

  40. C.G. Skipwith, W. Cao, X.L. Zheng, J. Biol. Chem. 285, 28596 (2010)

    Article  Google Scholar 

  41. A.J. Xu, T.A. Springer, J. Biol. Chem. 288, 6317 (2013)

    Article  Google Scholar 

  42. Arjen J. Jakobi, Alireza Mashaghi, Sander J. Tans, Eric G. Huizinga, Nat. Commun. 2, 385 (2011)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Radtke.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Radtke, M., Lippok, S., Rädler, J. et al. Internal tension in a collapsed polymer under shear flow and the connection to enzymatic cleavage of von Willebrand factor. Eur. Phys. J. E 39, 32 (2016). https://doi.org/10.1140/epje/i2016-16032-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16032-7

Keywords

  • Soft Matter: Polymers and Polyelectrolytes