Skip to main content
Log in

Barrier-induced dielectric counterion relaxation at super-low frequencies in salt-free polyelectrolyte solutions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Based on the thermally activated diffusion of counterions over the barrier of the electrostatic binding potential, we construct a scaling theory for the slow dielectric response in dilute and semi-dilute polyelectrolyte solutions. The theory is based on an analytic evaluation of the mean-escape time of a single counterion from the surface of a polyelectrolyte chain and uses a variational expression for the electrostatic potential of a charged cylinder including counterion condensation. This mean-escape time shows a range of characteristic power-law dependencies on the polyelectrolyte length and the polyelectrolyte monomer concentration. The existence of this novel dielectric mode at super-low frequencies reflects the wide spectrum of experimental findings for the super-low-frequency dielectric relaxation mode and thereby helps to reconcile conflicting interpretations of experimental data in terms of conventional scaling laws. We also devise a scaling theory for the counterion condensation of finite-length polyelectrolyte chains at finite concentration, which allows us to include polyelectrolyte charge renormalization in dilute as well as semi-dilute solutions in a unified theoretical framework.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Takashima, J. Mol. Biol. 7, 455 (1963)

    Article  Google Scholar 

  2. F. Van der Touw, M. Mandel, Biophys. Chem. 2, 231 (1974)

    Article  Google Scholar 

  3. T. Vreugdenhil, F. van der Touw, M. Mandel, Biophys. Chem. 10, 67 (1979)

    Article  Google Scholar 

  4. L.M. Penafiel, T.A. Litovitz, J. Chem. Phys. 97, 559 (1992)

    Article  ADS  Google Scholar 

  5. M. Sakamoto, T. Fujikado, R. Hayakawa, Y. Wada, Biophys. Chem. 11, 309 (1980)

    Article  Google Scholar 

  6. N. Ookubo, Y. Hirai, K. Ito, R. Hayakawa, Macromolecules 22, 1359 (1989)

    Article  ADS  Google Scholar 

  7. K. Ito, A. Yagi, N. Ookubo, R. Hayakawa, Macromolecules 23, 857 (1990)

    Article  ADS  Google Scholar 

  8. Y. Nagamine, K. Ito, R. Hayakawa, Langmuir 15, 4135 (1999)

    Article  Google Scholar 

  9. F. Bordi, C. Cametti, J.S. Tan, D.C. Boris, W.E. Krause, N. Plucktaveesak, R. Colby, Macromolecules 35, 7031 (2002)

    Article  ADS  Google Scholar 

  10. F. Bordi, C. Cametti, R. Colby, J. Phys.: Condens. Matter 16, R1423 (2004)

    ADS  Google Scholar 

  11. S. Tomić, T. Vuletić, S.D. Babić, R. Podgornik, S. Krča, D. Ivanković, L. Griparić, Phys. Rev. Lett. 97, 4 (2006)

    Google Scholar 

  12. S. Omori, Y. Katsumoto, A. Yasuda, K. Asami, Phys. Rev. E 73, 050901 (2006)

    Article  ADS  Google Scholar 

  13. Y. Katsumoto, S. Omori, D. Yamamoto, A. Yasuda, K. Asami, Phys. Rev. E 75, 011911 (2007)

    Article  ADS  Google Scholar 

  14. S. Tomić, S.D. Babić, T. Vuletić, S. Krča, D. Ivanković, L. Griparić, R. Podgornik, Phys. Rev. E 75, 021905 (2007)

    Article  ADS  Google Scholar 

  15. S. Tomić, S.D. Babić, T. Ivek, T. Vuletić, S. Krča, F. Livolant, R. Podgornik, EPL 81, 68003 (2008)

    Article  ADS  Google Scholar 

  16. R. Buchner, G. Hefter, Phys. Chem. Chem. Phys. 11, 8984 (2009)

    Article  Google Scholar 

  17. T. Vuletić, S.D. Babić, T. Ivek, D. Grgičin, S. Tomić, R. Podgornik, Phys. Rev. E 82, 011922 (2010)

    Article  ADS  Google Scholar 

  18. S. Tomić, D. Grgičin, T. Ivek, S.D. Babić, T. Vuletić, G. Pabst, R. Podgornik, Macromol. Symp. 305, 43 (2011)

    Article  Google Scholar 

  19. S. Tomić, D. Grgičin, T. Ivek, T. Vuletić, S.D. Babić, R. Podgornik, Physica B 407, 1958 (2012)

    Article  ADS  Google Scholar 

  20. D. Grgičin, S.D. Babić, T. Ivek, S. Tomić, R. Podgornik, Phys. Rev. E 88, 052703 (2013)

    Article  ADS  Google Scholar 

  21. S. Fischer, R.R. Netz, Eur. Phys. J. E 36, 117 (2013)

    Article  Google Scholar 

  22. A.V. Dobrynin, M. Rubinstein, Prog. Polym. Sci. 30, 1049 (2005)

    Article  Google Scholar 

  23. C.-Y.D. Lu, Phys. Rev. E 84, 041804 (2011)

    Article  ADS  Google Scholar 

  24. A.V. Dobrynin, R. Colby, M. Rubinstein, Macromolecules 28, 1859 (1995)

    Article  ADS  Google Scholar 

  25. K.F. Rinne, S. Gekle, R.R. Netz, J. Chem. Phys. 141, 214502 (2014)

    Article  ADS  Google Scholar 

  26. M. Mandel, T. Odijk, Annu. Rev. Phys. Chem. 35, 75 (1984)

    Article  ADS  Google Scholar 

  27. S. Fischer, R.R. Netz, Phys. Rev. Lett. 101, 176103 (2008)

    Article  ADS  Google Scholar 

  28. W.K. Kim, W. Sung, Phys. Rev. E 78, 021904 (2008)

    Article  ADS  Google Scholar 

  29. P.G. de Gennes, P. Pincus, R.M. Velasco, F. Brochard, J. Phys. 37, 1461 (1976)

    Article  Google Scholar 

  30. R.M. Fuoss, A. Katchalsky, S. Lifson, Proc. Natl. Acad. Sci. U.S.A. 37, 579 (1951)

    Article  MATH  ADS  Google Scholar 

  31. T. Alfrey, P.W. Berg, H. Morawetz, J. Polym. Sci. 7, 543 (1951)

    Article  ADS  Google Scholar 

  32. G.S. Manning, J. Chem. Phys. 51, 924 (1969)

    Article  ADS  Google Scholar 

  33. P. González-Mozuelos, M.O. de la Cruz, J. Chem. Phys. 103, 3145 (1995)

    Article  ADS  Google Scholar 

  34. A. Deshkovski, S. Obukhov, M. Rubinstein, Phys. Rev. Lett. 86, 2341 (2001)

    Article  ADS  Google Scholar 

  35. S. Lifson, J.L. Jackson, J. Chem. Phys. 36, 2410 (1962)

    Article  ADS  Google Scholar 

  36. R.R. Netz, J. Phys. Chem. B 107, 8208 (2003)

    Article  Google Scholar 

  37. G.S. Manning, U. Mohanty, Physica A 247, 196 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Kyu Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W., Netz, R.R. Barrier-induced dielectric counterion relaxation at super-low frequencies in salt-free polyelectrolyte solutions. Eur. Phys. J. E 38, 120 (2015). https://doi.org/10.1140/epje/i2015-15120-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15120-6

Keywords

Navigation