Skip to main content
Log in

Liquid-body resonance while contacting a rotating superhydrophobic surface

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We advance a scheme in which a liquid body on a stationary tip in contact with a rotating superhydrophobic surface is able to maintain resonance primarily from stick-slip events. With tip-to-surface spacing in the range \(2.73 \le h < 2.45\) mm for a volume of 10 μL, the liquid body was found to exhibit resonance independent of the speed of the drum. The mechanics were found to be due to a surface-tension-controlled vibration mode based on the natural frequency values determined. With spacing in the range \(2.45 \le h < 2.15\) mm imposed for a volume of 10 μL, the contact length of the liquid body was found to vary with rotation of the SH drum. This was due to the stick-slip events being able to generate higher energy fluctuations causing the liquid-solid contact areas to vary since the almost oblate spheroid shape of the liquid body had intrinsically higher surface energies. This resulted in the natural frequency perturbations being frequency- and amplitude-modulated over a lower frequency carrier. These findings have positive implications for microfluidic sensing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Huh, L. Scriven, J. Colloid Interface Sci. 35, 85 (1971)

    Article  Google Scholar 

  2. R. Budakian, K. Weninger, R.A. Hiller, S.J. Putterman, Nature 391, 266 (1998)

    Article  ADS  Google Scholar 

  3. B. Vukasinovic, A. Glezer, M.K. Smith, Phys. Fluids 13, S14 (2001)

    Article  ADS  Google Scholar 

  4. P. Brunet, J. Eggers, R.D. Deegan, Phys. Rev. Lett. 99, 144501 (2007)

    Article  ADS  Google Scholar 

  5. S. Daniel, S. Sircar, J. Gliem, M.K. Chaudhury, Langmuir 20, 4085 (2004)

    Article  Google Scholar 

  6. A. Hashmi, Y. Xu, B. Coder, P.A. Osborne, J. Spafford, G.E. Michael, G. Yu, J. Xu, Sci Rep. 2, 797 (2012)

    Article  ADS  Google Scholar 

  7. C.Y. Lau, Z. Roslan, B.H.P. Cheong, W.S. Chua, O.W. Liew, T.W. Ng, J. Colloid Interface Sci. 426, 56 (2014)

    Article  Google Scholar 

  8. F. Brochard-Wyart, P.-G. de Gennes, Eur. Phys. J. E 23, 439 (2007)

    Article  Google Scholar 

  9. I.S. Fayzrakhmanova, A.V. Straube, Phys. Fluids 21, 072104 (2009)

    Article  ADS  Google Scholar 

  10. E.D. Wilkes, O.A. Basaran, J. Colloid Interface Sci. 242, 180 (2001)

    Article  Google Scholar 

  11. C. Huh, S.G. Mason, J. Colloid Interface Sci. 60, 11 (1977)

    Article  Google Scholar 

  12. M. Kanungo, S. Mettu, K.-Y. Law, S. Daniel, Langmuir 30, 7358 (2014)

    Article  Google Scholar 

  13. H.-Y. Kim, Phys. Fluids 16, 474 (2004)

    Article  ADS  Google Scholar 

  14. L. Dong, A. Chaudhury, M.K. Chaudhury, Eur. Phys. J. E 21, 231 (2006)

    Article  Google Scholar 

  15. J.H. Moon, B.H. Kang, H.-Y. Kim, Phys. Fluids 18, 021702 (2006)

    Article  ADS  Google Scholar 

  16. T.-Y. Chen, J.A. Tsamopoulos, R.J. Good, J. Colloid Interface Sci. 151, 49 (1992)

    Article  Google Scholar 

  17. J.H. Saavedra, R.E. Rozas, P.G. Toledo, J. Colloid Interface Sci. 426, 145 (2014)

    Article  Google Scholar 

  18. J.K.K. Lye, T.W. Ng, W.Y.L. Ling, J. Appl. Phys. 110, 104509 (2011)

    Article  ADS  Google Scholar 

  19. N. Ichikawa, M. Kawaji, M. Misawa, G. Psofogiannakis, J. Jpn. Soc. Micrograv. Appl. 20, 292 (2003)

    Google Scholar 

  20. T.W. Ng, Y. Panduputra, Langmuir 28, 453 (2012)

    Article  Google Scholar 

  21. E.S. Leibner, N. Barnthip, W. Chen, C.R. Baumrucker, J.V. Badding, M. Pishko, E.A. Vogler, Acta Biomater. 5, 1389 (2009)

    Article  Google Scholar 

  22. T. Vuong, B.H.P. Cheong, J.K.K. Lye, O.W. Liew, T.W. Ng, Anal. Biochem. 430, 53 (2012)

    Article  Google Scholar 

  23. H.K. Lee, Y.H. Lee, Q. Zhang, I.Y. Phang, J.M.R. Tan, Y. Cui, X.Y. Ling, ACS Appl. Mater. Interfaces 5, 11409 (2013)

    Article  Google Scholar 

  24. I.A. Larmour, S.E.J. Bell, G.C. Saunders, Angew. Chem. Int. Ed. Engl. 119, 1740 (2007)

    Article  Google Scholar 

  25. G.J. Elfring, E. Lauga, Phys. Fluids 24, 072102 (2012)

    Article  ADS  Google Scholar 

  26. B.J. Matkowsky, Z. Schuss, SIAM J. Appl. Math. 33, 365 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  27. O.V. Borisenko, Ukrainian Math. J. 44, 1511 (1992)

    Article  MathSciNet  Google Scholar 

  28. J.M.T. Thompson, Nature 296, 135 (1982)

    Article  ADS  Google Scholar 

  29. M.K. Chaudhury, P.S. Goohpattader, Eur. Phys. J. E 36, 9829 (2013)

    Article  Google Scholar 

  30. B.R. Johnson, J. Opt. Soc. Am. A 10, 343 (1993)

    Article  ADS  Google Scholar 

  31. H.B. Lin, A.L. Huston, B.L. Justus, A.J. Campillo, Opt. Lett. 11, 614 (1986)

    Article  ADS  Google Scholar 

  32. S. Avino, A. Krause, R. Zullo, A. Giorgini, P. Malara, P. De Natale, H.P. Loock, G. Gagliardi, Adv. Opt. Mater. 2, 1155 (2014)

    Article  Google Scholar 

  33. A. Krishnan, J. Sturgeon, C.A. Siedlecki, E.A. Vogler, J. Biomed. Mater. Res. A 68, 544 (2004)

    Article  Google Scholar 

  34. Y. Gaponenko, A. Mialdun, V. Shevtsova, Eur. Phys. J. E 37, 90 (2014)

    Article  Google Scholar 

  35. A.A. Ahmad Zahidi, B.H.-P. Cheong, S.H. Huynh, T. Vuong, O.W. Liew, T.W. Ng, Colloids Surf. A: Physiochem. Eng. Aspects 486, 21 (2015)

    Article  Google Scholar 

  36. M.C. Salvadori, M.R.S. Oliveira, R. Spirin, F.S. Teixeira, M. Cattani, I.G. Brown, J. Appl. Phys. 114, 174911 (2013)

    Article  ADS  Google Scholar 

  37. J.B. Boreyko, C.H. Chen, Phys. Rev. Lett. 103, 174502 (2009)

    Article  ADS  Google Scholar 

  38. G. Liu, L. Fu, A.V. Rode, V. Craig, Langmuir 27, 2595 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuck Wah Ng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, M., Cheng, M., Katariya, M. et al. Liquid-body resonance while contacting a rotating superhydrophobic surface. Eur. Phys. J. E 38, 119 (2015). https://doi.org/10.1140/epje/i2015-15119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15119-y

Keywords

Navigation