Skip to main content
Log in

A molecular model for the free energy, bending elasticity, and persistence length of wormlike micelles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

An expression for the elastic free-energy density of a wormlike micelle is derived taking into account interactions between its constituent molecules. The resulting expression is quadratic in the curvature and torsion of the centerline of micelle and thus resembles free-energy density functions for polymer chains and helical filaments such as DNA. The model is applied on a wormlike micelle in the shape of a circular arc, open or closed. Conditions under which linear chains in dilute systems transform into toroidal rings are analyzed. Two concrete anisotropic soft-core interaction potentials are used to calculate the elastic moduli present in the derived model, in terms of the density of the molecules and their dimensions. Expressions for the persistence length of the wormlike micelle are found based on the flexural rigidities so obtained. Similar to previous observations, our results indicate that the persistence length of a wormlike micelle increases as the aspect ratio of its constituent molecules increases. A detailed application of the model on wormlike micelles of toroidal geometry, along with employing statistical-thermodynamical concepts of self-assembly is performed, and the results are found to be well consistent with the literature. Steps to obtain the material parameters through possible experiments are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Israelachvili, Intermolecular and Surface Forces: Revised Third Edition (Academic press, 2011).

  2. J.N. Israelachvili, D.J. Mitchell, B.W. Ninham, J. Chem. Soc. Faraday Trans. 2 72, 1525 (1976).

    Article  Google Scholar 

  3. M. Cates, S. Candau, J. Phys.: Condens. Matter 2, 6869 (1990).

    ADS  Google Scholar 

  4. B.M. Discher, Y.-Y. Won, D.S. Ege, J.C. Lee, F.S. Bates, D.E. Discher, D.A. Hammer, Science 284, 1143 (1999).

    Article  ADS  Google Scholar 

  5. H. Cui, Z. Chen, S. Zhong, K.L. Wooley, D.J. Pochan, Science 317, 647 (2007).

    Article  ADS  Google Scholar 

  6. A. Bernheim-Groswasser, R. Zana, Y. Talmon, J. Phys. Chem. B 104, 4005 (2000).

    Article  Google Scholar 

  7. G. Porte, R. Gomati, O. El Haitamy, J. Phys. Chem. 90, 5746 (1986).

    Article  Google Scholar 

  8. R. Zana, E.W. Kaler, Giant Micelles: Properties and Applications (CRC Press, 2007).

  9. L. van Dam, G. Karlsson, K. Edwards, Biochim. Biophys. Acta 1664, 241 (2004).

    Article  Google Scholar 

  10. C. Oelschlaeger, M. Schopferer, F. Scheffold, N. Willenbacher, Langmuir 25, 716 (2008).

    Article  Google Scholar 

  11. E. Boek, J. Padding, V. Anderson, W. Briels, J. Crawshaw, J. Non-Newton. Fluid Mech. 146, 11 (2007).

    Article  MATH  Google Scholar 

  12. S. Lerouge, J.-F. Berret, Adv. Polym. Sci. 230, 1 (2010).

    Article  Google Scholar 

  13. N. Spenley, M. Cates, T. McLeish, Phys. Rev. Lett. 71, 939 (1993).

    Article  ADS  Google Scholar 

  14. Y.-Y. Won, H.T. Davis, F.S. Bates, Science 283, 960 (1999).

    Article  ADS  Google Scholar 

  15. C.A. Dreiss, Soft Matter 3, 956 (2007).

    Article  ADS  Google Scholar 

  16. J. Yang, Curr. Opin. Colloid Interface Sci. 7, 276 (2002).

    Article  Google Scholar 

  17. S. Komura, S. Safran, Eur. Phys. J. E 5, 337 (2001).

    Article  Google Scholar 

  18. S. Ezrahi, E. Tuval, A. Aserin, Adv. Colloid Interface Sci. 128, 77 (2006).

    Article  Google Scholar 

  19. A. Trent, R. Marullo, B. Lin, M. Black, M. Tirrell, Soft Matter 7, 9572 (2011).

    Article  ADS  Google Scholar 

  20. M. Black, A. Trent, Y. Kostenko, J.S. Lee, C. Olive, M. Tirrell, Adv. Mater. 24, 3845 (2012).

    Article  Google Scholar 

  21. M. Yang, D. Xu, L. Jiang, L. Zhang, D. Dustin, R. Lund, L. Liu, H. Dong, Chem. Commun. 50, 4827 (2014).

    Article  Google Scholar 

  22. J. Padding, E. Boek, Europhys. Lett. 66, 756 (2004).

    Article  ADS  Google Scholar 

  23. J.-F. Berret, in Molecular Gels, edited by P. Terech, R. Weiss (Elsevier, New York, 2004).

  24. E. Boek, J. Padding, W. den Otter, W. Briels, J. Phys. Chem. B 109, 19851 (2005).

    Article  Google Scholar 

  25. L. Zhou, G.H. McKinley, L.P. Cook, J. Non-Newton. Fluid Mech. 211, 70 (2014).

    Article  Google Scholar 

  26. N. Germann, L. Cook, A. Beris, J. Non-Newton. Fluid Mech. 196, 51 (2013).

    Article  Google Scholar 

  27. V. Andreev, A. Victorov, Mol. Phys. 105, 239 (2007).

    Article  ADS  Google Scholar 

  28. D.P. Acharya, H. Kunieda, J. Phys. Chem. B 107, 10168 (2003).

    Article  Google Scholar 

  29. D.P. Acharya, H. Kunieda, Adv. Colloid Interface Sci. 123, 401 (2006).

    Article  Google Scholar 

  30. S.R. Raghavan, G. Fritz, E.W. Kaler, Langmuir 18, 3797 (2002).

    Article  Google Scholar 

  31. K. Kuperkar, L. Abezgauz, D. Danino, G. Verma, P. Hassan, V. Aswal, D. Varade, P. Bahadur, J. Colloid Interface Sci. 323, 403 (2008).

    Article  Google Scholar 

  32. O. Radulescu, P. Olmsted, J. Decruppe, S. Lerouge, J.-F. Berret, G. Porte, Europhys. Lett. 62, 230 (2003).

    Article  ADS  Google Scholar 

  33. A. Khatory, F. Lequeux, F. Kern, S. Candau, Langmuir 9, 1456 (1993).

    Article  Google Scholar 

  34. F. Nettesheim, N.J. Wagner, Langmuir 23, 5267 (2007).

    Article  Google Scholar 

  35. B.A. Schubert, E.W. Kaler, N.J. Wagner, Langmuir 19, 4079 (2003).

    Article  Google Scholar 

  36. S. May, Y. Bohbot, A. Ben-Shaul, J. Phys. Chem. B 101, 8648 (1997).

    Article  Google Scholar 

  37. P.B. Canham, J. Theor. Biol. 26, 61 (1970).

    Article  Google Scholar 

  38. W. Helfrich, Z. Naturforsch. C Bio. Sci. 28, 693 (1973).

    Google Scholar 

  39. M. Tang, W.C. Carter, J. Phys. Chem. B 117, 2898 (2013).

    Article  Google Scholar 

  40. Y. Lauw, F.A. Leermakers, J. Phys. Chem. B 107, 10912 (2003).

    Article  Google Scholar 

  41. L.M. Bergström, ChemPhysChem 8, 462 (2007).

    Article  Google Scholar 

  42. L.M. Bergström, J. Colloid Interface Sci. 327, 191 (2008).

    Article  Google Scholar 

  43. S. Puvvada, D. Blankschtein, J. Chem. Phys. 92, 3710 (1990).

    Article  ADS  Google Scholar 

  44. R. Nagarajan, E. Ruckenstein, Langmuir 7, 2934 (1991).

    Article  Google Scholar 

  45. L.M. Bergström, J. Colloid Interface Sci. 293, 181 (2006).

    Article  Google Scholar 

  46. J. Padding, E. Boek, Phys. Rev. E 70, 031502 (2004).

    Article  ADS  Google Scholar 

  47. Y. Roiter, S. Minko, J. Am. Chem. Soc. 127, 15688 (2005).

    Article  Google Scholar 

  48. O. Kratky, G. Porod, Recl. Trav. Chim. Pays-Bas 68, 1106 (1949).

    Article  Google Scholar 

  49. P. Bugl, S. Fujita, J. Chem. Phys. 50, 3137 (2003).

    Article  ADS  Google Scholar 

  50. J.B. Keller, G.J. Merchant, J. Stat. Phys. 63, 1039 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  51. B. Seguin, E. Fried, J. Math. Biol. 68, 647 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  52. M. Asgari, A. Biria, Int. J. Nonlinear Mech. 76, 135 (2015).

    Article  ADS  Google Scholar 

  53. B.J. Berne, P. Pechukas, J. Chem. Phys. 56, 4213 (2003).

    Article  ADS  Google Scholar 

  54. J.G. Gay, B.J. Berne, J. Chem. Phys. 74, 3316 (1981).

    Article  ADS  Google Scholar 

  55. J.S. Lintuvuori, M.R. Wilson, J. Chem. Phys. 128, 044906 (2008).

    Article  ADS  Google Scholar 

  56. T. Shikata, S.J. Dahman, D.S. Pearson, Langmuir 10, 3470 (1994).

    Article  Google Scholar 

  57. S. Jain, F.S. Bates, Science 300, 460 (2003).

    Article  ADS  Google Scholar 

  58. T. Vermonden, J. van der Gucht, P. de Waard, A.T.M. Marcelis, N.A.M. Besseling, E.J.R Sudhölter, G.J. Fleer, M.A. Cohen Stuart, Macromolecules 36, 7035 (2003).

    Article  ADS  Google Scholar 

  59. C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics (Springer, 2004).

  60. P.G. de Prado Salas, M. Encinar, A. Alonso, M. Velez, P. Tarazona, Chem. Phys. Lipids 185, 141 (2015).

    Article  Google Scholar 

  61. L.M. Bergström, Langmuir 25, 1949 (2009).

    Article  Google Scholar 

  62. M. Gradzielski, Curr. Opin. Colloid Interface Sci. 8, 337 (2003).

    Article  Google Scholar 

  63. A. Goriely, P. Shipman, Phys. Rev. E 61, 4508 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  64. L. Landau, E. Lifshitz, Elasticity Theory (Pergamon Press, 1975).

  65. Y. Liu, T. Pérez, W. Li, J. Gunton, A. Green, J. Chem. Phys. 134, 065107 (2011).

    Article  ADS  Google Scholar 

  66. J.F. Marko, E.D. Siggia, Macromolecules 27, 981 (1994).

    Article  ADS  Google Scholar 

  67. A. Balaeff, L. Mahadevan, K. Schulten, Phys. Rev. E 73, 031919 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  68. M.E. Cates, T.A. Witten, Macromolecules 19, 732 (1986).

    Article  ADS  Google Scholar 

  69. W.M. Gelbart, A. Ben-Shaul, J. Phys. Chem. 100, 13169 (1996).

    Article  Google Scholar 

  70. M. In, O. Aguerre-Chariol, R. Zana, J. Phys. Chem. B 103, 7747 (1999).

    Article  Google Scholar 

  71. S. May, Y. Bohbot, A. Ben-Shaul, J. Phys. Chem. B 105, 630 (2001).

    Article  Google Scholar 

  72. S.C. Sharma, L.K. Shrestha, K. Tsuchiya, K. Sakai, H. Sakai, M. Abe, J. Phys. Chem. B 113, 3043 (2009).

    Article  Google Scholar 

  73. S.A. Safran, L.A. Turkevich, Iampietro, P. Pincus, J. Phys. Lett. 45, 69 (1984).

    Article  Google Scholar 

  74. M.E. Cates, Macromolecules 20, 2289 (1987).

    Article  ADS  Google Scholar 

  75. S.J. Candau, F. Merikhi, G. Waton, P. Lemaréchal, J. Phys. 51, 977 (1990).

    Article  Google Scholar 

  76. P. Van Der Schoot, M.E. Cates, Europhys. Lett. 25, 515 (1994).

    Article  ADS  Google Scholar 

  77. G. Porte, J. Phys. Chem. 87, 3541 (1983).

    Article  Google Scholar 

  78. J.E. Jones, Proc. R. Soc. A 106, 441 (1924).

    Article  ADS  Google Scholar 

  79. L. Whitehead, C.M. Edge, J.W. Essex, J. Comput. Chem. 22, 1622 (2001).

    Article  Google Scholar 

  80. A. Ben-Shaul, D. Roux, Micelles, Membranes, Microemulsions, and Monolayers (Springer, Berlin, 1994).

  81. M.R. Stukan, E.S. Boek, J.T. Padding, J.P. Crawshaw, Eur. Phys. J. E 26, 63 (2008).

    Article  Google Scholar 

  82. N. Saito, K. Takahashi, Y. Yunoki, J. Phys. Soc. Jpn. 22, 219 (1967).

    Article  ADS  Google Scholar 

  83. L.M. Bergström, Thermodynamics of Self-Assembly (INTECH, 2011).

  84. P.J. Flory, J. Chem. Phys. 10, 51 (1942).

    Article  ADS  Google Scholar 

  85. M.L. Huggins, J. Chem. Phys. 9, 440 (1941).

    Article  ADS  Google Scholar 

  86. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953).

  87. W.H. Beyer, CRC Standard Mathematical Tables, 25th edition (1978).

  88. H. Jung, B. Coldren, J. Zasadzinski, D. Iampietro, E. Kaler, Proc. Natl. Acad. Sci. U.S.A. 98, 1353 (2001).

    Article  ADS  Google Scholar 

  89. M.P. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice-Hall Englewood Cliffs, 1976).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meisam Asgari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, M. A molecular model for the free energy, bending elasticity, and persistence length of wormlike micelles. Eur. Phys. J. E 38, 98 (2015). https://doi.org/10.1140/epje/i2015-15098-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15098-y

Keywords

Navigation