Skip to main content
Log in

Convection and fluidization in oscillatory granular flows: The role of acoustic streaming

  • Colloquium
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Convection and fluidization phenomena in vibrated granular beds have attracted a strong interest from the physics community since the last decade of the past century. As early reported by Faraday, the convective flow of large inertia particles in vibrated beds exhibits enigmatic features such as frictional weakening and the unexpected influence of the interstitial gas. At sufficiently intense vibration intensities surface patterns appear bearing a stunning resemblance with the surface ripples (Faraday waves) observed for low-viscosity liquids, which suggests that the granular bed transits into a liquid-like fluidization regime despite the large inertia of the particles. In his 1831 seminal paper, Faraday described also the development of circulation air currents in the vicinity of vibrating plates. This phenomenon (acoustic streaming) is well known in acoustics and hydrodynamics and occurs whenever energy is dissipated by viscous losses at any oscillating boundary. The main argument of the present paper is that acoustic streaming might develop on the surface of the large inertia particles in the vibrated granular bed. As a consequence, the drag force on the particles subjected to an oscillatory viscous flow is notably enhanced. Thus, acoustic streaming could play an important role in enhancing convection and fluidization of vibrated granular beds, which has been overlooked in previous studies. The same mechanism might be relevant to geological events such as fluidization of landslides and soil liquefaction by earthquakes and sound waves.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Faraday, Philos. Trans. R. Soc. London 52, 299 (1831).

    Article  Google Scholar 

  2. Sedley Taylor, Proc. R. Soc. London 27, 71 (1878).

    Article  Google Scholar 

  3. V. Dvorak, Ann. Phys. 227, 634 (1874).

    Article  Google Scholar 

  4. E.N. da C. Andrade, Proc. R. Soc. London, Ser A 134, 445 (1931).

    Article  ADS  Google Scholar 

  5. B.A. Al-Zaitone, C. Tropea, Chem. Engin. Sci. 66, 3914 (2011).

    Article  Google Scholar 

  6. Lord Rayleigh, Philos. Trans. R. Soc. London 175, 1 (1884).

    Article  MATH  Google Scholar 

  7. Henk Jan van Gerner, Ko van der Weele, Martin A. van der Hoef, Devaraj van der Meer, J. Fluid Mech. 689, 203 (2011).

    Article  MATH  ADS  Google Scholar 

  8. H. Schlichting, Phys. Z. 33, 327 (1932).

    Google Scholar 

  9. Peter J. Westervelt, J. Acous. Soc. Am. 25, 60 (1953).

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Holtsmark, I. Johnsen, T. Sikkeland, S. Skavlem, J. Acous. Soc. Am. 26, 26 (1954).

    Article  MathSciNet  ADS  Google Scholar 

  11. N. Riley, Q. J. Mech. Appl. Math. 19, 461 (1966).

    Article  Google Scholar 

  12. B.J. Davidson, N. Riley, J. Fluid Mech. 53, 287 (1972).

    Article  MATH  ADS  Google Scholar 

  13. A. Gopinath, A.F. Mills, ASME: J. Heat Transf. 115, 332 (1993).

    Article  Google Scholar 

  14. Chun P. Lee, Taylor G. Wang, J. Acoust. Soc. Am. 88, 2367 (1990).

    Article  ADS  Google Scholar 

  15. E.H. Trinh, J.L. Robey, Phys. Fluids 6, 3567 (1994).

    Article  ADS  Google Scholar 

  16. S.V. Komarov, Advanced Topics in Mass Transfer, chapter Application of Airborne Sound Waves for Mass Transfer Enhancement (InTech, 2011) pp. 61--86.

  17. J.M. Valverde, J.M.P. Ebri, M.A.S. Quintanilla, Environ. Sci. Technol. 47, 9538 (2013).

    Article  ADS  Google Scholar 

  18. Steven L. Garrett, Am. J. Phys. 72, 11 (2004).

    Article  ADS  Google Scholar 

  19. F.H. Reynst, Pulsating combustion: the collected works of F.H. Reynst (Pergamom Press, 1961).

  20. J.O. Gagnon, M.P. Paidoussis, J. Fluids Struct. 8, 293 (1994).

    Article  ADS  Google Scholar 

  21. A.L. Yarin, G. Brenn, O. Kastner, D. Rensink, C. Tropea, J. Fluid Mech. 399, 151 (1999).

    Article  MATH  ADS  Google Scholar 

  22. Frieder Mugele, Adrian Staicu, Rina Bakker, Dirk van den Ende, Lab Chip 11, 2011 (2011).

    Article  Google Scholar 

  23. Martin Wiklund, Roy Green, Mathias Ohlin, Lab Chip 12, 2438 (2012).

    Article  Google Scholar 

  24. Po-Chuan Huang, Chih-Cheng Chen, Hsiu-Ying Hwang, Int. J. Heat Mass Transfer 61, 696 (2013).

    Article  Google Scholar 

  25. N. Riley, Annu. Rev. Fluid Mech. 33, 43 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  26. Greg W. Swift, Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators (Acoustical Society of America through the American Institute of Physics, 2002).

  27. S. Yavuzkurt, M.Y. Ha, G. Reethof, G. Koopmann, A.W. Scaroni, J. Energy Res. Technol. 113, 286 (1991).

    Article  Google Scholar 

  28. A. Gopinath, H.R. Harder, Int. J. Heat Mass Transt. 43, 505 (2000).

    Article  MATH  Google Scholar 

  29. Yonglin Ju, Yan Jiang, Yuan Zhou, Cryogenics 38, 649 (1998).

    Article  ADS  Google Scholar 

  30. B.P.M. Helvensteijn, A. Kashani, A.L. Spivak, P.R. Roach, J.M. Lee, and P. Kittel, in Advances in Cryogenic Engineering, Vol. 43 edited by P. Kittel (Springer US, 1998) pp. 1619--1626.

  31. Melda Ödinç Çarpinlioglu, Mehmet Yasar Gündogdu, Flow Meas. Instrum. 12, 163 (2001).

    Article  Google Scholar 

  32. Li wen Jin, KaiChoong Leong, Transport Porous Media 72, 37 (2008).

    Article  Google Scholar 

  33. J.M. Valverde, F.J. Duran-Olivencia, Riv. Nuovo Cimento 37, 591 (2014).

    Google Scholar 

  34. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, chapter Fluid Mechanics (Pergamon Press, New York, 1995).

  35. Jose Manuel Valverde, Contemp. Phys. DOI: 10.1080/00107514.2015.1008742(0):1--210.

  36. Sungryel Choi, Kwanwoo Nam, Sangkwon Jeong, Cryogenics 44, 203 (2004).

    Article  Google Scholar 

  37. D. Klotsa, Michael R. Swift, R.M. Bowley, P.J. King, Phys. Rev. E 79, 021302 (2009).

    Article  ADS  Google Scholar 

  38. R. Wunenburger, V. Carrier, Y. Garrabos, Phys. Fluids 14, 2350 (2002).

    Article  ADS  Google Scholar 

  39. C. Laroche, S. Douady, S. Fauve, J. Phys. (Paris) 50, 699 (1989).

    Article  Google Scholar 

  40. R. Evesque, J. Phys. (Paris) 51, 697 (1990).

    Article  Google Scholar 

  41. P. Evesque, Contemp. Phys. 33, 245 (1992).

    Article  ADS  Google Scholar 

  42. D.-W. Wang, Y.-C. Chou, T.-M. Hong, Europhys. Lett. 35, 333 (1996).

    Article  ADS  Google Scholar 

  43. Igor S. Aranson, Lev S. Tsimring, Rev. Mod. Phys. 78, 641 (2006).

    Article  ADS  Google Scholar 

  44. H. Pak, E. Van Doorn, R.P. Behringer, Phys. Rev. Lett. 74, 4643 (1995).

    Article  ADS  Google Scholar 

  45. M.H.I. Baird, M.G. Senior, R.J. Thompson, Chem. Engin. Sci. 22, 551 (1967).

    Article  Google Scholar 

  46. E.B. Tunstall, G. Houghton, Chem. Engin. Sci. 23, 1067 (1968).

    Article  Google Scholar 

  47. Yong Deng, Mooson Kwauk, Chem. Engin. Sci. 45, 483 (1990).

    Article  Google Scholar 

  48. T.S. Zhao, P. Cheng, Cryogenics 36, 333 (1996).

    Article  ADS  Google Scholar 

  49. J.A.C. Gallas, H.J. Herrmann, S. Sokołowski, Phys. Rev. Lett. 69, 1371 (1992).

    Article  ADS  Google Scholar 

  50. Y.-h. Taguchi, Phys. Rev. Lett. 69, 1367 (1992).

    Article  ADS  Google Scholar 

  51. J.J. Moreau, in Powders Grains 93, edited by C. Thornton (Balkema, Rotterdam, 1993) p. 227.

  52. S. Luding, E. Clément, A. Blumen, J. Rajchenbach, J. Duran, Phys. Rev. E 50, R1762 (1994).

    Article  ADS  Google Scholar 

  53. Henk Jan van Gerner, Martin A. van der Hoef, Devaraj van der Meer, Ko van der Weele, Phys. Rev. E 76, 051305 (2007).

    Article  ADS  Google Scholar 

  54. Henk Jan van Gerner, Gabriel A. Caballero-Robledo, Devaraj van der Meer, Ko van der Weele, Martin A. van der Hoef, Phys. Rev. Lett. 103, 028001 (2009).

    Article  ADS  Google Scholar 

  55. J. Li, I.S. Aranson, W.-K. Kwok, L.S. Tsimring, Phys. Rev. Lett. 90, 134301 (2003).

    Article  ADS  Google Scholar 

  56. Stuart B. Savage, J. Fluid Mech. 194, 457 (1988).

    Article  ADS  Google Scholar 

  57. P. Evesque, E. Szmatula, J.-P. Denis, Europhys. Lett. 12, 623 (1990).

    Article  ADS  Google Scholar 

  58. Jose Manuel Valverde, Fluidization of Fine Powders: Cohesive versus Dynamical Aggregation, Vol. 18 Particle Technology Series (Springer, 2013).

  59. R.D. Wildman, J.M. Huntley, D.J. Parker, Phys. Rev. E 63, 061311 (2001).

    Article  ADS  Google Scholar 

  60. G. D'Anna, P. Mayor, A. Barrat, V. Loreto, Franco Nori, Nature 424, 909 (2003).

    Article  ADS  Google Scholar 

  61. Heinrich M. Jaeger, Sidney R. Nagel, Robert P. Behringer, Rev. Mod. Phys. 68, 1259 (1996).

    Article  ADS  Google Scholar 

  62. M. Nakagawa, S.A. Altobelli, A. Caprihan, E. Fukushima, E.K. Jeong, Exp. Fluids 16, 54 (1993).

    Article  Google Scholar 

  63. A. Castellanos, J.M. Valverde, A.T. Perez, A. Ramos, P.K. Watson, Phys. Rev. Lett. 82, 1156 (1999).

    Article  ADS  Google Scholar 

  64. J.M. Valverde, A. Castellanos, M.A.S. Quintanilla, Contemp. Phys. 44, 389 (2003).

    Article  ADS  Google Scholar 

  65. R.P. Behringer, E. van Doorn, R.R. Hartley, H.K. Pak, Granular Matter 4, 9 (2002).

    Article  Google Scholar 

  66. E. Falcon, K. Kumar, K. Bajaj, J.K. Bhattacharjee, Phys. Rev. E 59, 5716 (1999).

    Article  ADS  Google Scholar 

  67. H. Pak, R.P. Behringer, Phys. Rev. Lett. 71, 1832 (1993).

    Article  ADS  Google Scholar 

  68. F. Melo, P. Umbanhowar, H.L. Swinney, Phys. Rev. Lett. 72, 172 (1994).

    Article  ADS  Google Scholar 

  69. Benku Thomas, Arthur M. Squires, Phys. Rev. Lett. 81, 574 (1998).

    Article  ADS  Google Scholar 

  70. J. Duran, Phys. Rev. Lett. 84, 5126 (2000).

    Article  ADS  Google Scholar 

  71. R.J. Milburn, M.A. Naylor, A.J. Smith, M.C. Leaper, K. Good, Michael R. Swift, P.J. King, Phys. Rev. E 71, 011308 (2005).

    Article  ADS  Google Scholar 

  72. P. Evesque, J. Rajchenbach, Phys. Rev. Lett. 62, 44 (1989).

    Article  ADS  Google Scholar 

  73. Eric van Doorn, R.P. Behringer, Phys. Lett. A 235, 469 (1997).

    Article  ADS  Google Scholar 

  74. Francisco Melo, Paul B. Umbanhowar, Harry L. Swinney, Phys. Rev. Lett. 75, 3838 (1995).

    Article  ADS  Google Scholar 

  75. Sui Lei, Miao Guo-Qing, Wei Rong-Jue, Chin. Phys. Lett. 18, 614 (2001).

    Article  ADS  Google Scholar 

  76. P.C. Carman, Chem. Engin. Res. Design 75, S32 (1997).

    Article  Google Scholar 

  77. K. Rietema, The Dynamics of Fine Powders (Elsevier, London, 1991).

  78. M.L. Hunt, C.R. Wassgren, C.E. Brennen, J. Appl. Mech. 63, 712 (1996).

    Article  Google Scholar 

  79. J.M. Valverde, A. Castellanos, Europhys. Lett. 75, 985 (2006).

    Article  ADS  Google Scholar 

  80. R.L. Brown, J.C. Richards, P.V. Danckwerts, Principles of Powder Mechanics: Essays on the Packing and Flow of Powders and Bulk Solids (Elsevier Science, 2013).

  81. W.C. Yang, Handbook of Fluidization and Fluid-Particle Systems (Taylor & Francis, 2003).

  82. A.C. Hoffmann, H.J. Finkers, Powder Technol. 82, 197 (1995).

    Article  Google Scholar 

  83. E.R. Nowak, J.B. Knight, E. Ben-Naim, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 57, 1971 (1998).

    Article  ADS  Google Scholar 

  84. Osborne Reynolds, Philos. Mag. Ser. 5 20, 469 (1885).

    Article  Google Scholar 

  85. Sandra Wegner, Ralf Stannarius, Axel Boese, Georg Rose, Balazs Szabo, Ellak Somfai, Tamas Borzsonyi, Soft Matter 10, 5157 (2014).

    Article  ADS  Google Scholar 

  86. E. van Doorn, R.P. Behringer, Europhys. Lett. 40, 387 (1997).

    Article  ADS  Google Scholar 

  87. Jose Manuel Valverde, Soft Matter 9, 8792 (2013).

    Article  Google Scholar 

  88. P.B. Umbanhowar, F. Melo, H.L. Swinney, Nature 382, 793 (1996).

    Article  ADS  Google Scholar 

  89. P.B. Umbanhowar, F. Melo, H.L. Swinney, Physica A 249, 1 (1998).

    Article  ADS  Google Scholar 

  90. S. Douady, S. Fauve, C. Laroche, Europhys. Lett. 8, 621 (1989).

    Article  ADS  Google Scholar 

  91. John R. de Bruyn, B.C. Lewis, M.D. Shattuck, Harry L. Swinney, Phys. Rev. E 63, 041305 (2001).

    Article  ADS  Google Scholar 

  92. Osamu Sano, Ataka Takei, AIP Conf. Proc. 1145, 729 (2009).

    Article  ADS  Google Scholar 

  93. H.J. Melosh, Nature 379, 601 (1996).

    Article  ADS  Google Scholar 

  94. Kaiwen Xia, Sheng Huang, Chris Marone, Geochem. Geophys. Geosyst. 14, 1012 (2013).

    Article  ADS  Google Scholar 

  95. Antoine Lucas, Anne Mangeney, Jean Paul Ampuero, Nat. Commun. 5, 3417 (2014).

    Google Scholar 

  96. Alexander Wong, Chi-Yuen Wang, J. Geophys. Res. B: Solid Earth 112, B10305 (2007).

    Article  Google Scholar 

  97. R. Chirone, L. Massimilla, S. Russo, Chem. Engin. Sci. 48, 41 (1993).

    Article  Google Scholar 

  98. A. Ajbar, Y. Bakhbakhi, S. Ali, M. Asif, Powder Technol. 206, 327 (2011).

    Article  Google Scholar 

  99. P. Ammendola, R. Chirone, F. Raganati, Chem. Engin. Proc.: Proc. Intensif. 50, 885 (2011).

    Article  Google Scholar 

  100. J.M. Valverde, F. Raganati, M.A.S. Quintanilla, J.M.P. Ebri, P. Ammendola, R. Chirone, Appl. Energy 111, 538 (2013).

    Article  Google Scholar 

  101. F. Raganati, P. Ammendola, R. Chirone, Appl. Energy 113, 1269 (2014).

    Article  Google Scholar 

  102. C. Soria-Hoyo, J.M. Valverde, A. Castellanos, Powder Technol. 196, 257 (2009).

    Article  Google Scholar 

  103. H. Schubert, Powder Technol. 37, 105 (1984).

    Article  Google Scholar 

  104. M. Campbell, J.A. Cosgrove, C.A. Greated, S. Jack, D. Rockliff, Optics Laser Technol. 32, 629 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Manuel Valverde.

Additional information

Prof. José Manuel Valverde Millán obtained a Batchelor Science degree in Physics at the University of Seville in Spain in 1993, and a Ph.D. in Physics from the same University in 1997. He is currently Professor and Researcher at the University of Seville. His research activity has been focused on the study of fluidization and mechanical properties of granular materials and can be considered as highly interor multi-disciplinary, lying between the areas of engineering and fundamental physics. A main subject of current interest is the development of novel techniques to enhance the CO2 capture and thermochemical energy storage efficiencies of CaO-based materials by means of the Ca-looping technology based on carbonation/calcination of natural limestone and dolomite in fluidized beds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valverde, J.M. Convection and fluidization in oscillatory granular flows: The role of acoustic streaming. Eur. Phys. J. E 38, 66 (2015). https://doi.org/10.1140/epje/i2015-15066-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15066-7

Keywords

Navigation