Skip to main content
Log in

Apparent wall slip in non-Brownian hard-sphere suspensions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We analyze apparent wall slip, the reduction of particle concentration near the wall, in hard-sphere suspensions at concentrations well below the jamming limit utilizing a continuum level diffusion model. The approach extends a constitutive equation proposed earlier with two additional potentials describing the effects of gravitation and wall-particle repulsion. We find that although both mechanisms are shear independent by nature, due to the shear-rate-dependent counter-balancing particle migration fluxes, the resulting net effect is non-linearly shear dependent, causing larger slip at small shear rates. In effect, this shows up in the classically measured flow curves as a mild shear thickening regime at the transition from small to intermediate shear rates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Sochi, Polym. Rev. 51, 309 (2011).

    Article  Google Scholar 

  2. D. Bonn, S. Rodts, M. Groenink, S. Rafai, N. Shahidzadeh-Bonn, P. Coussot, Annu. Rev. Fluid Mech. 40, 209 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Joseph, P. Tabeling, Phys. Rev. E 71, 035303R (2005).

    Article  ADS  Google Scholar 

  4. P. Huang, J.S. Guasto, K.S. Breuer, J. Fluid Mech. 566, 447 (2006).

    Article  ADS  MATH  Google Scholar 

  5. P. Ballesta, G. Petekidis, L. Isa, W.C.K. Poon, R. Besseling, J. Rheol. 56, 1005 (2012).

    Article  ADS  Google Scholar 

  6. U. Yilmazer, D.M. Kalyon, J. Rheol. 33, 1197 (1989).

    Article  ADS  Google Scholar 

  7. D.M. Kalyon, J. Rheol. 49, 621 (2005).

    Article  ADS  Google Scholar 

  8. J.R. Seth, M. Cloitre, R.T. Bonnecaze, J. Rheol. 52, 1241 (2008).

    Article  ADS  Google Scholar 

  9. S.P. Meeker, R.T. Bonnecaze, M. Cloitre, Phys. Rev. Lett. 92, 198302 (2004).

    Article  ADS  Google Scholar 

  10. S.P. Meeker, R.T. Bonnecaze, M. Cloitre, J. Rheol. 48, 1295 (2004).

    Article  ADS  Google Scholar 

  11. V. Bertola, F. Bertrand, H. Tabuteau, D. Bonn, P. Coussot, J. Rheol. 47, 1211 (2003).

    Article  ADS  Google Scholar 

  12. V. Mansard, L. Bocquet, A. Colin, Soft Matter 10, 6984 (2014).

    Article  ADS  Google Scholar 

  13. F. Soltani, Ü. Yilmazer, J. Appl. Polym. Sci. 70, 515 (1998).

    Article  Google Scholar 

  14. S. Gulmus, Ü. Yilmazer, J. Appl. Polym. Sci. 98, 439 (2005).

    Article  Google Scholar 

  15. L. Chen, Y. Duan, C. Zhao, L. Yang, Chem. Eng. Process. 48, 1241 (2009).

    Article  Google Scholar 

  16. S. Manneville, Rheol. Acta 47, 301 (2008).

    Article  Google Scholar 

  17. P. Ballesta, R. Besseling, L. Isa, G. Petekidis, W.C.K. Poon, Phys. Rev. Lett. 101, 258301 (2008).

    Article  ADS  Google Scholar 

  18. R. Buscall, J. Rheol. 54, 1177 (2010).

    Article  ADS  Google Scholar 

  19. H.A. Barnes, J. Non-Newton. Fluid Mech. 56, 221 (1995).

    Article  Google Scholar 

  20. A. Yoshimura, R.K. Prud’homme, J. Rheol. 32, 53 (1988).

    Article  ADS  Google Scholar 

  21. S.C. Jana, B. Kapoor, A. Acrivos, J. Rheol. 39, 1123 (1995).

    Article  ADS  Google Scholar 

  22. F. Blanc, F. Peters, E. Lemaire, J. Rheol. 55, 835 (2011).

    Article  ADS  Google Scholar 

  23. F. Blanc, E. Lemaire, A. Meunier, F. Peters, J. Rheol. 57, 273 (2013).

    Article  ADS  Google Scholar 

  24. J.B. Salmon, L. Bécu, S. Manneville, A. Colin, Eur. Phys. J. E 10, 209 (2003).

    Article  Google Scholar 

  25. J.M. Zheng, W.C. Chin, E. Khijniak, E. Khijniak Jr., G.H. Pollack, Ad. Colloid Interface Sci. 127, 19 (2006).

    Article  Google Scholar 

  26. D. Florea, S. Musa, J.M.R. Huyghe, H.M. Wyss, Proc. Nat. Acad. Sci. U.S.A. 111, 6554 (2014).

    Article  ADS  Google Scholar 

  27. G. Ovarlez, Q. Barral, P. Coussot, Nat. Mater. 9, 115 (2010).

    Article  ADS  Google Scholar 

  28. R. Buscall, J.I. McGowan, A.J. Morton-Jones, J. Rheol. 37, 621 (1993).

    Article  ADS  Google Scholar 

  29. M.S. Ingber, A.L. Graham, L.A. Mondy, Z. Fang, Int. J. Multiphase Flow 35, 270 (2009).

    Article  Google Scholar 

  30. A. Jabbarzadeh, J.D. Atkinson, R.I. Tanner, J. Chem. Phys. 110, 2612 (1999).

    Article  ADS  Google Scholar 

  31. A. Jabbarzadeh, J.D. Atkinson, R.I. Tanner, Phys. Rev. E 61, 690 (2000).

    Article  ADS  Google Scholar 

  32. K. Yeo, M.R. Maxey, J. Fluid Mech. 649, 205 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. R.R. Bilodeau, D.W. Bousfield, J. Rheol. 42, 743 (1998).

    Article  ADS  Google Scholar 

  34. A. Ahuja, A. Singh, J. Rheol. 53, 1461 (2009).

    Article  ADS  Google Scholar 

  35. Y.M. Joshi, A.K. Lele, R.A. Mashelkar, J. Non-Newton. Fluid Mech. 94, 135 (2000).

    Article  MATH  Google Scholar 

  36. D.A. Hill, J. Rheol. 42, 581 (1998).

    Article  ADS  Google Scholar 

  37. F. Brochard, P.G. De Gennes, Langmuir 8, 3033 (1992).

    Article  Google Scholar 

  38. A. Adjari, F. Brochard-Wyart, P.G. de Gennes, L. Leibler, J.L. Viovy, M. Rubinstein, Physica A 204, 17 (1994).

    Article  ADS  Google Scholar 

  39. H. Tabuteau, J.C. Baudez, F. Bertrand, P. Coussot, Rheol. Acta 43, 168 (2004).

    Article  Google Scholar 

  40. V.N. Michailidou, G. Petekidis, J.W. Swan, J.F. Brady, Phys. Rev. Lett. 102, 068302 (2009).

    Article  ADS  Google Scholar 

  41. R.J. Phillips, R.C. Armstrong, R.A. Brown, A.L. Graham, J.R. Abbott, Phys. Fluids 4, 30 (1992).

    Article  ADS  MATH  Google Scholar 

  42. D. Leighton, A. Acrivos, Chem. Eng. Sci. 41, 1377 (1986).

    Article  Google Scholar 

  43. D. Merhi, E. Lemaire, G. Bossis, F. Moukalled, J. Rheol. 49, 1429 (2005).

    Article  ADS  Google Scholar 

  44. H.M. Shewan, J.R. Stokes, J. Non-Newton. Fluid Mech. DOI:10.1016/j.jnnfm.2014.09.002 (2014).

  45. N. Gordon, T. McMahon, B. Finlayson, L. Brian, C. Gippel, R. Nathan, Stream Hydrology - An Introduction for Ecologists 2nd edition (John Wiley & Sons, 2004).

  46. W. Qu, D. Li, J. Colloid Interface Sci. 224, 397 (2000).

    Article  Google Scholar 

  47. G. Sewell, Numerical Solution of Ordinary and Partial Differential Equations 2nd edition (John Wiley & Sons, 2005). .

  48. S.D. Cohen, A.C. Hindmarsh, Comput. Phys. 10, 138 (1995).

    Article  ADS  Google Scholar 

  49. T. Freltoft, J.K. Kjems, S.K. Sinha, Phys. Rev. B 33, 269 (1986).

    Article  ADS  Google Scholar 

  50. H.A. Barnes, J. Non-Newton. Fluid Mech. 94, 213 (2000).

    Article  ADS  MATH  Google Scholar 

  51. J. Sanchez-Reyes, L.A. Archer, Langmuir 19, 3304 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Mohtaschemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korhonen, M., Mohtaschemi, M., Puisto, A. et al. Apparent wall slip in non-Brownian hard-sphere suspensions. Eur. Phys. J. E 38, 46 (2015). https://doi.org/10.1140/epje/i2015-15046-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15046-y

Keywords

Navigation