Skip to main content
Log in

Response of a polymer network to the motion of a rigid sphere

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In view of recent microrheology experiments we re-examine the problem of a rigid sphere oscillating inside a dilute polymer network. The network and its solvent are treated using the two-fluid model. We show that the dynamics of the medium can be decomposed into two independent incompressible flows. The first, dominant at large distances and obeying the Stokes equation, corresponds to the collective flow of the two components as a whole. The other, governing the dynamics over an intermediate range of distances and following the Brinkman equation, describes the flow of the network and solvent relative to one another. The crossover between these two regions occurs at a dynamic length scale which is much larger than the network's mesh size. The analysis focuses on the spatial structure of the medium's response and the role played by the dynamic crossover length. We examine different boundary conditions at the sphere surface. The large-distance collective flow is shown to be independent of boundary conditions and network compressibility, establishing the robustness of two-point microrheology at large separations. The boundary conditions that fit the experimental results for inert spheres in entangled F-actin networks are those of a free network, which does not interact directly with the sphere. Closed-form expressions and scaling relations are derived, allowing for the extraction of material parameters from a combination of one- and two-point microrheology. We discuss a basic deficiency of the two-fluid model and a way to bypass it when analyzing microrheological data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Squires, T.G. Mason, Annu. Rev. Fluid Mech. 42, 413 (2010).

    Article  ADS  Google Scholar 

  2. T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).

    Article  ADS  Google Scholar 

  3. J.C. Crocker, M.T. Valentine, E.R. Weeks, T. Gisler, P.D. Kaplan, A.G. Yodh, D.A. Weitz, Phys. Rev. Lett. 85, 888 (2000).

    Article  ADS  Google Scholar 

  4. J.L. McGrath, J.H. Hartwig, S.C. Kuo, Biophys. J. 17, 3258 (2000).

    Article  Google Scholar 

  5. D.T. Chen, E.R. Weeks, J.C. Crocker, M.F. Islam, R. Verma, J. Gruber, A.J. Levine, T.C. Lubensky, A.G. Yodh, Phys. Rev. Lett. 90, 108301 (2003).

    Article  ADS  Google Scholar 

  6. M.L. Gardel, M.T. Valentine, J.C. Crocker, A.R. Bausch, D.A. Weitz, Phys. Rev. Lett. 91, 158302 (2003).

    Article  ADS  Google Scholar 

  7. L. Starrs, P. Bartlett, Faraday Discuss. 123, 323 (2003).

    Article  ADS  Google Scholar 

  8. M.T. Valentine, Z.E. Perlman, M.L. Gardel, J.H. Shin, P. Matsudaira, T.J. Mitchison, D.A. Weitz, Biophys. J. 86, 4004 (2004).

    Article  Google Scholar 

  9. H.C. Fu, V.B. Shenoy, T.R. Powers, Phys. Rev. E 78, 061503 (2008).

    Article  ADS  Google Scholar 

  10. A.J. Levine, T.C. Lubensky, Phys. Rev. Lett. 85, 1774 (2000).

    Article  ADS  Google Scholar 

  11. A.J. Levine, T.C. Lubensky, Phys. Rev. E 65, 011501 (2001).

    Article  ADS  Google Scholar 

  12. A. Sonn-Segev, A. Bernheim-Groswasser, H. Diamant, Y. Roichman, Phys. Rev. Lett. 112, 088301 (2014).

    Article  ADS  Google Scholar 

  13. A. Sonn-Segev, A. Bernheim-Groswasser, Y. Roichman, Soft Matter 10, 8324 (2014).

    Article  ADS  Google Scholar 

  14. P.-G. de Gennes, Macromolecules 9, 587 (1976).

    Article  ADS  Google Scholar 

  15. P.-G. de Gennes, Macromolecules 9, 594 (1976).

    Article  ADS  Google Scholar 

  16. M. Doi, A. Onuki, J. Phys. II 2, 1631 (1992).

    Google Scholar 

  17. S.T. Milner, Phys. Rev. E 48, 3674 (1993).

    Article  ADS  Google Scholar 

  18. A.J. Levine, T.C. Lubensky, Phys. Rev. E 63, 041510 (2001).

    Article  ADS  Google Scholar 

  19. R. Bruinsma, A.Y. Grosberg, Y. Rabin, A. Zidovska, Biophys. J. 106, 1871 (2014).

    Article  ADS  Google Scholar 

  20. H.C. Brinkman, Appl. Sci. Res. A1, 27 (1947).

    Google Scholar 

  21. D. Long, A. Ajdari, Eur. Phys. J. E 4, 29 (2001).

    Article  Google Scholar 

  22. H. Diamant, Isr. J. Chem. 47, 225 (2007).

    Article  Google Scholar 

  23. H. Diamant, J. Phys. Soc. Jpn. 78, 041002 (2009).

    Article  ADS  Google Scholar 

  24. See Mathematica and PDF files provided on-line as Supplementary Material.

  25. V. Pelletier, N. Gal, P. Fournier, M.L. Kilfoil, Phys. Rev. Lett. 102, 188303 (2009).

    Article  ADS  Google Scholar 

  26. F.C. MacKintosh, A.J. Levine, Phys. Rev. Lett. 100, 018104 (2008).

    Article  ADS  Google Scholar 

  27. A. Sonn-Segev, Y. Roichman, private communication.

  28. H. Diamant, arXiv:1406.2508.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Diamant.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diamant, H. Response of a polymer network to the motion of a rigid sphere. Eur. Phys. J. E 38, 32 (2015). https://doi.org/10.1140/epje/i2015-15032-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15032-5

Keywords

Navigation