Skip to main content
Log in

Interactions between microemulsion droplets decorated with hydrophobically modified polymers: A small-angle neutron scattering study

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The shape and interactions between microemulsion droplets (R = 8.2 nm, polydispersity 20%) either decorated with PEO modified with a single hydrophobic end function (PEO-m: C12H25 - (EO)n , M PEO = 5.2 kg/mol), or with telechelic polymers of twice the mass (PEO-2m: C12H25 - (EO)2n - C12H25, M PEO = 10.4 kg/mol) have been studied by small-angle neutron scattering (SANS). The results as a function of droplet and polymer concentration have been compared to the reference case of the bare microemulsion which was shown to be unchanged using Porod representations. The interactions between bare and decorated droplets have been analyzed using the structure factor S(q), at first in a model-free way based on its low-q limit S(q → 0). This analysis provides clear evidence on the concentration-dependent repulsive or attractive nature of the contributions to the pair droplet-droplet pair potential of the polymers. Model pair potentials describing the steric repulsions and attractions by copolymer bridging are used to describe the low-q behavior of the structure factor based on an integral equation approach, giving an estimate of the range and amplitude of the potentials. Moreover, they provide an explanation for the observed transient clustering in terms of a shallow minimum of the total potential, as they establish the respective repulsive and attractive contributions of the polymer molecules.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.J.W. Verwey, J. Th., G. Overbeek, Theory of the stability of lyophobic colloids (Elsevier, Amsterdam, 1948).

  2. H.C. Hamaker, Physica 4, 1058 (1937).

    Article  ADS  Google Scholar 

  3. J.N. Israelachvili, Intermolecular & Surface Forces, 2nd edition (Academic Press, London, 1992).

  4. S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954).

    ADS  Google Scholar 

  5. S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958).

    Article  ADS  Google Scholar 

  6. G.J. Fleer, M.A. Cohen Stuart, T. Cosgrove, J.M. Scheutjens, B. Vincent, Polymers at interfaces (Chapman and Hall, London, 1993).

  7. P.G. de Gennes, Adv. Colloid Interface Sci. 27, 189 (1987).

    Article  Google Scholar 

  8. A. Zilman, J. Kieffer, F. Molino, G. Porte, S.A. Safran, Phys. Rev. Lett. 91, 015901 (2003).

    Article  ADS  Google Scholar 

  9. J.H. Schulman, W. Stoeckenius, L.M. Prince, J. Phys. Chem. 63, 1677 (1959).

    Article  Google Scholar 

  10. T. Hellweg, Curr. Opin. Colloid Interface Sci. 7, 50 (2002).

    Article  Google Scholar 

  11. H. Bagger-Jörgensen, U. Olsson, K. Mortensen, Langmuir 13, 1413 (1997).

    Article  Google Scholar 

  12. H. Bagger-Jörgensen, L. Coppola, K. Thuresson, U. Olsson, K. Mortensen, Langmuir 13, 4204 (1997).

    Article  Google Scholar 

  13. M. Filali, R. Aznar, M. Svenson, G. Porte, J. Appell, J. Phys. Chem. B 103, 7293 (1999).

    Article  Google Scholar 

  14. N. Puech, S. Mora, V. Testard, G. Porte, C. Ligoure, I. Grillo, T. Phou, J. Oberdisse, Eur. Phys. J. E 26, 13 (2008).

    Article  Google Scholar 

  15. P. Malo de Molina, M.-S. Appavou, M. Gradzielski, Soft Matter 10, 5072 (2014).

    Article  ADS  Google Scholar 

  16. P. Malo de Molina, C. Herfurth, A. Laschewsky, M. Gradzielski, Langmuir 28, 15994 (2012).

    Article  Google Scholar 

  17. M. Filali, M.J. Ouazzani, E. Michel, R. Aznar, G. Porte, J. Appell, J. Phys. Chem. B 105, 10528 (2001).

    Article  Google Scholar 

  18. N. Puech, S. Mora, T. Phou, G. Porte, J. Jestin, J. Oberdisse, Soft Matter 6, 5605 (2010).

    Article  ADS  Google Scholar 

  19. T. Annable, R. Buscall, R. Ettelaie, D. Whittlestone, J. Rheol. 37, 695 (1993).

    Article  ADS  Google Scholar 

  20. M. Odenwald, H.F. Eicke, W. Meier, Macromolecules 28, 5069 (1995).

    Article  ADS  Google Scholar 

  21. J.P. Kaczmarski, J.E. Glass, Macromolecules 26, 5149 (1993).

    Article  ADS  Google Scholar 

  22. O. Vorobyova, A. Yekta, A. Winnik, W. Lau, Macromoleucles 95, 145 (1998).

    Google Scholar 

  23. S.A. Safran, Phys. Rev. A 43, 2903 (1991).

    Article  ADS  Google Scholar 

  24. M.S. Leaver, U. Olsson, H. Wennerström, R. Strey, J. Phys. II. 4, 515 (1994).

    Google Scholar 

  25. C.J. Glinka, J.G. Barker, B. Hammouda, S. Krueger, J.J. Moyer, W.J. Orts, J. Appl. Cryst. 31, 430 (1998).

    Article  Google Scholar 

  26. P. Lindner, T. Zemb (Editors), Neutron, X ray and Light Scattering: introduction to an investigation tool for colloidal and polymeric systems (North-Holland, Amsterdam, 1991).

  27. L. Belloni, J. Phys.: Condens. Matter 12, R549 (2000).

    ADS  Google Scholar 

  28. L. Belloni, J. Phys.: Condens. Matter 14, 9323 (2002).

    ADS  Google Scholar 

  29. J. Oberdisse, B. Demé, Macromolecules 35, 4397 (2002).

    Article  ADS  Google Scholar 

  30. J.K. Percus, G.J. Yevick, Phys. Rev. 110, 1 (1958).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. N.W. Ashcroft, D.C. Langreth, Phys. Rev. 156, 685 (1967).

    Article  ADS  Google Scholar 

  32. B. Cabane, R. Duplessix, J. Phys. (Paris) 43, 1529 (1982).

    Article  Google Scholar 

  33. S. Kawaguchi, G. Imai, J. Suzuki, A. Miyahara, T. Kitano, K. Ito, Polymer 38, 2885 (1997).

    Article  Google Scholar 

  34. S.R. Bathia, W.B. Russel, Macromolecules 33, 5713 (2000).

    Article  ADS  Google Scholar 

  35. A.N. Semenov, J.-F. Joanny, A.R. Khokhlov, Macromolecules 28, 1066 (1995).

    Article  ADS  Google Scholar 

  36. V. Testard, J. Oberdisse, C. Ligoure, Macromolecules 41, 7219 (2008).

    Article  ADS  Google Scholar 

  37. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986).

  38. G.P. Baeza, A.C. Genix, C. Degrandcourt, L. Petitjean, J. Gummel, M. Couty, J. Oberdisse, Macromolecules 46, 317 (2013).

    Article  ADS  Google Scholar 

  39. T. Hellweg, D. Langevin, Physica A 264, 370 (1999).

    Article  ADS  Google Scholar 

  40. S. Maccarrone, H. Frielinghaus, J. Allgaier, D. Richter, P. Lindner, Langmuir 23, 9559 (2007).

    Article  Google Scholar 

  41. G. Porte, C. Ligoure, J. Appell, R. Aznar, J. Stat. Mech., 05005 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Oberdisse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elghazrani, K., Azougarh, A., Oberdisse, J. et al. Interactions between microemulsion droplets decorated with hydrophobically modified polymers: A small-angle neutron scattering study. Eur. Phys. J. E 37, 128 (2014). https://doi.org/10.1140/epje/i2014-14128-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14128-8

Keywords

Navigation