Skip to main content
Log in

Intermittency of aeolian saltation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Saltation motion of sand grains in a steady wind was measured using a high-speed camera at very high frequency in a wind tunnel. A Heaviside-type function was defined to quantificationally describe an inherent property of saltation, i.e. intermittency. Kurtosis and periodicity of state function are statistical manifestations of intermittency. In addition, the strong autocorrelation of time series of volume concentration clearly confirms that saltation is not a completely random process at the timescale of subsecond. Formation mechanism, especially turbulent structures responsible for intermittent saltation, remains to be revealed from the viewpoint of classical mechanics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Chapman and Hall, Methuen, London, 1941) pp. 1--106

  2. Y.Q. Ling, Z. Wu, Acta Geol. Sin. 35, 174 (1980) (in Chinese with English abstract)

    Google Scholar 

  3. B.R. White, Int. J. Multiphase Flow 8, 459 (1982)

    Article  Google Scholar 

  4. M.A. Rice, B.B. Willetts, I.K. McEwan, Sedimentology 42, 695 (1995)

    Article  ADS  Google Scholar 

  5. R. Greeley, D.G. Blumberg, S.H. Williams, Sedimentology 43, 41 (1996)

    Article  ADS  Google Scholar 

  6. T.D. Ho, A. Valance, P. Dupont, A.O.E. Moctar, Aeolian Res. 12, 65 (2014)

    Article  ADS  Google Scholar 

  7. M.L. von Pokorny, S. Horender, Earth Surf. Proc. Land. 39, 1803 (2014)

    Article  ADS  Google Scholar 

  8. M.V. Carneiro, K.R. Rasmussen, H.J. Herrmann, arXiv:1403.4840v1 (2014)

  9. P.R. Owen, J. Fluid Mech. 20, 225 (1964)

    Article  ADS  MATH  Google Scholar 

  10. M.R. Raupach, Acta Mech. Suppl. 1, 83 (1991)

    Google Scholar 

  11. M. Sørensen, Acta Mech. Suppl. 1, 67 (1991)

    Google Scholar 

  12. J.J. Zhu, Z.B. Kuang, X.Y. Zou, Y.Z. Liu, Sci. China 41, 629 (1998)

    Article  MATH  Google Scholar 

  13. J.T. Jenkins, I. Cantat, A. Valance, Phys. Rev. E 82, 020301(R) (2010)

    Article  ADS  Google Scholar 

  14. T. Pähtz, J.F. Kok, H.J. Herrmann, New J. Phys. 14, 043035 (2012)

    Article  Google Scholar 

  15. M. Lämmel, D. Rings, K. Kroy, New J. Phys. 14, 093037 (2012)

    Article  Google Scholar 

  16. T. Pähtz, J.F. Kok, E.J.R. Parteli, H.J. Herrmann, Phys. Rev. Lett. 111, 218002 (2013)

    Article  ADS  Google Scholar 

  17. T. Pähtz, E.J.R. Parteli, J.F. Kok, H.J. Herrmann, Phys. Rev. E 89, 052213 (2014)

    Article  ADS  Google Scholar 

  18. J.E. Ungar, P.K. Haff, Sedimentology 34, 289 (1987)

    Article  ADS  Google Scholar 

  19. B.T. Werner, A Physical Model of Wind-Blown Sand Transport, PhD thesis, California Institute of Technology (1987) pp. 1--442

  20. R.S. Anderson, P.K. Haff, Science 241, 820 (1988)

    Article  ADS  Google Scholar 

  21. Y.P. Shao, A. Li, Boundary Layer Meteorol. 91, 199 (1999)

    Article  ADS  Google Scholar 

  22. P.J. Spies, I.K. McEwan, G.R. Butterfield, Earth Surf. Proc. Land. 25, 505 (2000)

    Article  ADS  Google Scholar 

  23. J.F. Kok, N.O. Renno, J. Geophys. Res. Atmos. 114, D17204 (2009)

    Article  ADS  Google Scholar 

  24. X. Zheng, Mechanics of Wind-blown Sand Movements (Springer-Verlag, Berlin, Heidelberg, 2009) pp. 133--180

  25. N. Huang, C. Wang, X. Pan, J. Geophys. Res. Atmos. 115, D22211 (2010)

    Article  ADS  Google Scholar 

  26. O. Durán, B. Andreotti, C. Philippe, Phys. Fluids 24, 103306 (2012)

    Article  ADS  Google Scholar 

  27. M.V. Carneiro, N.A.M. Araújo, T. Pähtz, H.J. Herrmann, Phys. Rev. Lett. 111, 058001 (2013)

    Article  ADS  Google Scholar 

  28. G.R. Butterfield, J. Arid Environ. 39, 377 (1998)

    Article  Google Scholar 

  29. G. Sterk, A.F.G. Jacobs, J.H. Van Boxel, Earth Surf. Proc. Land. 23, 877 (1998)

    Article  ADS  Google Scholar 

  30. A.C.W. Baas, The Formation and Behavior of Aeolian Streamers, PhD Thesis, University of Southern California (2003) pp. 1--412

  31. A.C.W. Baas, D.J. Sherman, J. Geophys. Res. Earth Surf. 110, F03011 (2005)

    ADS  Google Scholar 

  32. I.J. Walker, Geomorphology 68, 57 (2005)

    Article  ADS  Google Scholar 

  33. I. Livingstone, G.F.S. Wiggs, C.M. Weaver, Earth-Sci. Rev. 80, 239 (2007)

    Article  ADS  Google Scholar 

  34. Y.P. Shao, Physics and Modelling of Wind Erosion (Springer-Verlag, Berlin, Heidelberg, 2008) pp. 149--209

  35. C. Hugenholtz, C. McKenna Neuman, B. Li, T. Barchyn, S. Sanderson, Geophys. Res. Abstr. 14, EGU2012-6201 (2012)

    Google Scholar 

  36. S. Dupont, G. Bergametti, B. Marticorena, S. Simoëns, J. Geophys. Res. Atmos. 118, 7109 (2013)

    Article  ADS  Google Scholar 

  37. S. Corrsin, A.L. Kistler, Free-Stream Boundaries of Turbulent Flows, NACA Report 1244 (1955) pp. 1--32

  38. S.B. Pope, Turbulent Flows (Cambridge University Press, 2000) pp. 34--82

  39. J.E. Stout, T.M. Zobeck, Sedimentology 44, 959 (1997)

    Article  Google Scholar 

  40. R. Mazumder, Earth-Sci. Rev. 50, 113 (2000)

    Article  ADS  Google Scholar 

  41. B.O. Bauer, J. Yi, S.L., Namikas, D.J. Sherman, J. Arid Environ. 39, 345 (1998)

    Article  Google Scholar 

  42. J.T. Ellis, Coherent Structures and Aeolian Saltation, PhD Thesis, Texas A&M University (2006) pp. 1--122

  43. B.O. Bauer, I.J. Walker, A.C.W. Baas, D.W.T. Jackson, C. McKenna-Neuman, G.F.S. Wiggs, P.A. Hesp, in Coherent Flow Structures at Earth’s Surface, edited by J.G. Venditti, J.L. Best, M. Church, R.J. Hardy (John Wiley & Sons, 2013) pp. 111--134

  44. S. Pfeifer, H.-J. Schönfeldt, Earth Surf. Proc. Land. 37, 1056 (2012)

    Article  ADS  Google Scholar 

  45. B.L. Li, C. McKenna Neuman, Geomorphology 214, 261 (2014)

    Article  ADS  Google Scholar 

  46. B.B. Willetts, I.K. McEwan, M.A. Rice, Acta Mech. Suppl. 1, 123 (1991)

    Google Scholar 

  47. M.A. Rice, B.B. Willetts, I.K. McEwan, Sedimentology 43, 21 (1996)

    Article  ADS  Google Scholar 

  48. X.Y. Zou, Z.L. Wang, Q.Z. Hao, C.L. Zhang, Y.Z. Liu, G.R. Dong, Geomorphology 36, 155 (2001)

    Article  ADS  Google Scholar 

  49. Z.B. Dong, H.T. Wang, X.P. Liu, F. Li, A.G. Zhao, Geomorphology 45, 277 (2002)

    Article  ADS  Google Scholar 

  50. P. Yang, Z.B. Dong, G.Q Qian, W.Y. Luo, H.T. Wang, Geomorphology 89, 320 (2007)

    Article  ADS  Google Scholar 

  51. W. Zhang, J.-H. Kang, S.-J. Lee, Geomorphology 86, 320 (2007)

    Article  ADS  Google Scholar 

  52. W. Zhang, J.-H. Kang, S.-J. Lee, J. Visual. 10, 39 (2007)

    Article  Google Scholar 

  53. L.Q. Kang, L.J. Guo, Z.M. Gu, D.Y. Liu, Geomorphology 97, 438 (2008)

    Article  ADS  Google Scholar 

  54. L.Q. Kang, L.J. Guo, D.Y. Liu, Sci. China 51, 896 (2008)

    Google Scholar 

  55. M. Creyssels, P. Dupont, A.O.E. Moctar, A. Valance, I. Cantat, J.T. Jenkins, J.M. Pasini, K.R. Rasmussen, J. Fluid Mech. 625, 47 (2009)

    Article  ADS  MATH  Google Scholar 

  56. B. Yang, Y. Wang, J. Liu, Y. Zhang, J. Exp. Fluid Mech. 24, 47 (2010) (in Chinese with English abstract)

    Google Scholar 

  57. T.D. Ho, A. Valance, P. Dupont, A.O.E. Moctar, Phys. Rev. Lett. 106, 094501 (2011)

    Article  ADS  Google Scholar 

  58. T.D. Ho, A. Valance, P. Dupont, A.O.E. Moctar, Phys. Rev. E 85, 052301 (2012)

    Article  ADS  Google Scholar 

  59. Z.-T. Wang, C.-L. Zhang, H.-T. Wang, Eur. Phys. J. E 36, 112 (2013)

    Article  ADS  Google Scholar 

  60. Z.B. Dong, G.Q. Qian, W.Y. Luo, H.T. Wang, Sci. Cold Arid Reg. 2, 185 (2010)

    Google Scholar 

  61. G.R. Butterfield, Earth Surf. Proc. Land. 24, 393 (1999)

    Article  ADS  Google Scholar 

  62. D.S.G. Pollock, A handbook of Time-Series Analysis, Signal Processing and Dynamics (Academic Press, 1999) pp. 1--782

  63. D.R. Derryberry, Basic Data Analysis for Time Series with $R$ (John Wiley & Sons, 2014) pp. 1--320

  64. C. Torrence, G.P. Compo, B. Am. Meteorol. Soc. 79, 61 (1998)

    Article  Google Scholar 

  65. S. Tardu, Statistical Approach to Wall Turbulence (John Wiley & Sons, 2011) pp. 54--104

  66. A. Tsinober, The Essence of Turbulence as a Physical Phenomenon (Springer-Verlag, Berlin, Heidelberg, 2014) pp. 37--51

  67. M.V. Carneiro, T. Pähtz, H.J. Herrmann, Phys. Rev. Lett. 107, 098001 (2011)

    Article  ADS  Google Scholar 

  68. B.R. White, J.C Schulzt, J. Fluid Mech. 81, 497 (1977)

    Article  ADS  Google Scholar 

  69. R.S. Anderson, J. Geol. 95, 497 (1987)

    Article  ADS  Google Scholar 

  70. R.S. Anderson, P.K. Haff, Acta Mech. Suppl. 1, 21 (1991)

    Google Scholar 

  71. Z.-T. Wang, H.-T. Wang, Q.-H. Niu, Z.-B. Dong, T. Wang, Phys. Rev. E 84, 031304 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Ting Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZT., Zhang, CL. & Wang, HT. Intermittency of aeolian saltation. Eur. Phys. J. E 37, 126 (2014). https://doi.org/10.1140/epje/i2014-14126-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14126-x

Keywords

Navigation