Skip to main content
Log in

Shape oscillation and detachment conditions for a droplet on a vibrating flat surface

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In this study, we obtain experimental understanding of the mode characteristics of a droplet placed on a flat surface under periodic forced vibrations. The detachment conditions for the droplet on the surface were also studied. In order to estimate the resonance frequency of a droplet placed on a hydrophobic surface, theoretical modelling was combined with experimental approaches. Two high speed cameras were used to observe droplet characteristics, including mode shape, detachment, occurrence of secondary droplet breakup, and horizontal torsional motion. Two cameras were installed to the right above the droplet and at the side of the droplet. There was no more than an 18% discrepancy between the theoretical and experimental resonance frequencies. This discrepancy was likely caused by several factors such as contact line friction, nonlinear wall adhesion, and experimental uncertainty. When applying a relatively low voltage to a speaker, the contact line of a droplet was pinned and shape oscillations of the droplet appeared in a bilaterally symmetric way. In contrast, at higher voltages, the contact line depinned and the shape oscillations became more active. For excitation frequencies identical to the mode frequency, the lobe size of the droplet was relatively larger than that at neighbouring frequencies. The experimental results also indicate that the generation and complete detachment of small-scale droplets occur only at the 2nd mode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J.W.S. Rayleigh, The Theory of Sound (London, 1877).

  2. B.J.W.S. Rayleigh, Proc. R. Soc. London 29, 196 (1879).

    Google Scholar 

  3. E.D. Wilkes, O.A. Basaran, Phys. Fluids 9, 1512 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. T.S. Lundgren, N.N. Mansour, J. Fluid Mech. 195, 479 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Rodot, C.L.A. Bisch, Acta Astronaut. 6, 1083 (1979).

    Article  ADS  Google Scholar 

  6. S. Daniel, S. Sircar, J. Gliem, Langmuir 20, 4085 (2004).

    Article  Google Scholar 

  7. S. Daniel, M.K. Chaudhury, P.G. De Gennes, Langmuir 21, 4240 (2005).

    Article  Google Scholar 

  8. L. Dong, A. Chaudhury, M.K. Chaudhury, Eur. Phys. J. E 21, 231 (2006).

    Article  Google Scholar 

  9. X. Noblin, A. Buguin, F. Brochard-Wyart, Eur. Phys. J. ST 166, 7 (2009).

    Article  Google Scholar 

  10. P. Brunet, J. Eggers, D.R. Deegan, Eur. Phys. J. ST 166, 11 (2009).

    Article  Google Scholar 

  11. F.J. Hong, D.D. Jiang, P. Cheng, J. Micromech. Microeng. 22, 1 (2012).

    Google Scholar 

  12. J.M. Oh, S.H. Ko, K.H. Kang, Langmuir 24, 8379 (2008).

    Article  Google Scholar 

  13. G. McHale, S.J. Elliott, M.I. Newton, D.L. Herbertson, K. Esmer, Langmuir 25, 529 (2009).

    Article  Google Scholar 

  14. Satwindar Sadhal, Portonovo S. Ayyaswamy, Jacob N. Chung, Transport Phenomena with Drops and Bubbles, in Mechanical Engineering Series (Springer, 1996).

  15. S.K. Cho, H. Moon, C.J. Kim, J. Microelectromech. Syst. 12, 70 (2003).

    Article  Google Scholar 

  16. R.A, Hayes, B.J. Feenstra, Nature 425, 383 (2003).

    Article  ADS  Google Scholar 

  17. K. Zhou, J. Heikenfeld, K.A. Dean, E.M. Howard, M.R. Johnson, J. Micromech. Microeng. 12, 065029 (2009).

    Article  Google Scholar 

  18. R.A. Hayes, B.J. Feenstra, Nature 7, 1181 (1995).

    Google Scholar 

  19. H.Y. Kim, Phys. Fluids 16, 474 (2004).

    Article  ADS  Google Scholar 

  20. P. Brunet, J. Eggers, D.R. Deegan, Phys. Rev. Lett. 99, 144501 (2007).

    Article  ADS  Google Scholar 

  21. T. Matsumoto, H. Fujii, T. Ueda, M. Kamai, K. Nogi, Meas. Sci. Technol. 16, 432 (2005).

    Article  ADS  Google Scholar 

  22. S. Yamakita, Y. Matsui, S. Shiokawa, Jpn. J. Appl. Phys. 38, 3127 (1999).

    Article  ADS  Google Scholar 

  23. Y. Karadag, A. Jonas, N. Tasaltin, A. Kiraz, Appl. Phys. Lett. 98, 194101 (2011).

    Article  ADS  Google Scholar 

  24. A. Jonas, Y. Karadag, N. Tasaltin, I. Kucukkara, A. Kiraz, Langmuir 27, 2150 (2011).

    Article  Google Scholar 

  25. U. Olgac, D. Izbassarov, M. Muradoglu, Comput. Fluids 88, 152 (2013).

    Article  Google Scholar 

  26. M. Strani, F.J. Sabetta, J. Fluid Mech. 141, 233 (1984).

    Article  ADS  MATH  Google Scholar 

  27. K.R. Langley, J.S. Sharp, Langmuir 26, 18349 (2010).

    Article  Google Scholar 

  28. H. Lamb, Hydrodynamics (Cambridge University Press, 1932).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Chang Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, YS., Lim, HC. Shape oscillation and detachment conditions for a droplet on a vibrating flat surface. Eur. Phys. J. E 37, 74 (2014). https://doi.org/10.1140/epje/i2014-14074-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14074-5

Keywords

Navigation