Skip to main content
Log in

Renewal events in glass-forming liquids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

On cooling toward the glass transition temperature, glass-forming liquids display long periods of localized motion interrupted by fast “jumps” in the single-particle trajectories. Several theoretical models based on these single-particle jumps have been proposed, most prominently the continuous-time random walk (CTRW). The central assumption of the CTRW is that jumps are renewal events, i.e. that the internal clock of a particle can be reset upon a jump. In this paper, I present an easy-to-implement method to test whether jumps detected in a supercooled liquid or glass are renewal events or not. The test was applied to molecular dynamics simulations of a short-chain polymer melt, demonstrating that the jumps can in fact be treated as renewal events. The test further revealed that additional relaxation processes are present which are not accounted for in the CTRW picture, highlighting the limitations of this approach. The notion of renewal events in glass-forming systems could be a very important building block for the interpretation of aging and the glass transition. Furthermore, it could have practical implications for the study of non-equilibrium dynamics in glasses as well as mechanical rejuvenation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Scholze, Glass -- Nature, Structure, and Properties (Springer-Verlag, New York, 1991).

  2. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011).

    Article  ADS  Google Scholar 

  3. M.D. Ediger, P. Harrowell, J. Chem. Phys. 137, 080901 (2012).

    Article  ADS  Google Scholar 

  4. G. Biroli, J.P. Garrahan, J. Chem. Phys. 138, 12A301 (2013).

    Google Scholar 

  5. E.J. Donth, The Glass Transition (Springer-Verlag, Berlin-Heidelberg, 2001).

  6. K. Binder, W. Kob, Glassy Materials and Disordered Solids (World Scientific, Singapore, 2005).

  7. W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, Oxford, 2009).

  8. L.C.E. Struik, Physical Aging in Amorphous Polymers and Other Materials (Elsevier, Amsterdam, 1978).

  9. W. Götze, J. Phys.: Condens. Matter 11, A1 (1999).

    Google Scholar 

  10. S.C. Glotzer, J. Non-Cryst. Solids 274, 342 (2000).

    Article  ADS  Google Scholar 

  11. M. Aichele, Y. Gebremichael, F.W. Starr, J. Baschnagel, S.C. Glotzer, J. Chem. Phys. 119, 5290 (2003) publisher's note: J. Chem. Phys. 120.

    Article  ADS  Google Scholar 

  12. Y. Jung, J.P. Garrahan, D. Chandler, J. Chem. Phys. 123, 084509 (2005).

    Article  ADS  Google Scholar 

  13. L.O. Hedges, L. Maibaum, D. Chandler, J.P. Garrahan, J. Chem. Phys. 127, 211101 (2007).

    Article  ADS  Google Scholar 

  14. H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999).

    Article  ADS  Google Scholar 

  15. M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).

    Article  ADS  Google Scholar 

  16. R. Richert, J. Phys.: Condens. Matter 14, R703 (2002).

    ADS  Google Scholar 

  17. L. Berthier, G. Biroli, J.P. Bouchaud, L. Cipelletti, W. van Saarloos, Dynamical Heterogeneities in Glasses, Colloids and Granular Media (Oxford University Press, Oxford, 2011).

  18. H. Miyagawa, Y. Hiwatari, B. Bernu, J.P. Hansen, J. Chem. Phys. 88, 3879 (1988).

    Article  ADS  Google Scholar 

  19. K. Vollmayr-Lee, J. Chem. Phys. 121, 4781 (2004).

    Article  ADS  Google Scholar 

  20. L. Berthier, D. Chandler, J.P. Garrahan, Europhys. Lett. 69, 320 (2005).

    Article  ADS  Google Scholar 

  21. M. Warren, J. Rottler, EPL 88, 58005 (2009).

    Article  ADS  Google Scholar 

  22. J.W. Ahn, B. Falahee, C. Del Piccolo, M. Vogel, D. Bingemann, J. Chem. Phys. 138, 12A527 (2013).

    Google Scholar 

  23. K. Vollmayr-Lee, R. Bjorkquist, L.M. Chambers, Phys. Rev. Lett. 110, 017801 (2013).

    Article  ADS  Google Scholar 

  24. E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  25. J.P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  26. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. R. Metzler, J. Klafter, J. Phys. A: Math. Gen. 37, R161 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. J. Klafter, I.M. Sokolov, First Steps in Random Walks (Oxford University Press, Oxford, 2011).

  29. T. Odagaki, Phys. Rev. B 38, 9044 (1988).

    Article  ADS  Google Scholar 

  30. T. Odagaki, Y. Hiwatari, Phys. Rev. A 41, 929 (1990).

    Article  ADS  Google Scholar 

  31. G. Wahnström, Phys. Rev. A 44, 3752 (1991).

    Article  ADS  Google Scholar 

  32. T. Odagaki, Phys. Rev. Lett. 75, 3701 (1995).

    Article  ADS  Google Scholar 

  33. C. Monthus, J.P. Bouchaud, J. Phys. A: Math. Gen. 29, 3847 (1996).

    Article  ADS  MATH  Google Scholar 

  34. P. Chaudhuri, L. Berthier, W. Kob, Phys. Rev. Lett. 99, 060604 (2007).

    Article  ADS  Google Scholar 

  35. P. Chaudhuri, Y. Gao, L. Berthier, M. Kilfoil, W. Kob, J. Phys.: Condens. Matter 20, 244126 (2008).

    ADS  Google Scholar 

  36. E. Barkai, Y.C. Cheng, J. Chem. Phys. 118, 6167 (2003).

    Article  ADS  Google Scholar 

  37. J.H.P. Schulz, E. Barkai, R. Metzler, Phys. Rev. X 4, 011028 (2014).

    Google Scholar 

  38. T.B. Schrøder, S. Sastry, J.C. Dyre, S.C. Glotzer, J. Chem. Phys. 112, 9834 (2000).

    Article  ADS  Google Scholar 

  39. P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001).

    Article  ADS  Google Scholar 

  40. A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008).

    Google Scholar 

  41. O. Rubner, A. Heuer, Phys. Rev. E 78, 011504 (2008).

    Article  ADS  Google Scholar 

  42. C.F.E. Schroer, A. Heuer, Phys. Rev. Lett. 110, 067801 (2013).

    Article  ADS  Google Scholar 

  43. M. Warren, J. Rottler, Phys. Rev. Lett. 110, 025501 (2013).

    Article  ADS  Google Scholar 

  44. C. de Michele, D. Leporini, Phys. Rev. E 63, 036701 (2001).

    Article  ADS  Google Scholar 

  45. M. Warren, J. Rottler, J. Chem. Phys. 133, 164513 (2010).

    Article  ADS  Google Scholar 

  46. M. Warren, J. Rottler, Phys. Rev. Lett. 104, 205501 (2010).

    Article  ADS  Google Scholar 

  47. A. Smessaert, J. Rottler, Phys. Rev. E 88, 022314 (2013).

    Article  ADS  Google Scholar 

  48. J. Helfferich, F. Ziebert, S. Frey, H. Meyer, J. Farago, A. Blumen, J. Baschnagel, Phys. Rev. E 89, 042603 (2014).

    Article  ADS  Google Scholar 

  49. J. Helfferich, F. Ziebert, S. Frey, H. Meyer, J. Farago, A. Blumen, J. Baschnagel, Phys. Rev. E 89, 042604 (2014).

    Article  ADS  Google Scholar 

  50. R. Pastore, A. Coniglio, M.P. Ciamarra, Soft Matter 10, 5724 (2014).

    Article  ADS  Google Scholar 

  51. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I (Wiley, New York, 1968).

  52. W. Feller, An Introduction to Probability Theory and Its Applications Vol. II (Wiley, New York, 1966).

  53. S. Peter, H. Meyer, J. Baschnagel, Eur. Phys. J. E 28, 147 (2009).

    Article  Google Scholar 

  54. B. Schnell, H. Meyer, C. Fond, J.P. Wittmer, J. Baschnagel, Eur. Phys. J. E 34, 97 (2011).

    Article  Google Scholar 

  55. M. Solar, H. Meyer, C. Gauthier, C. Fond, O. Benzerara, R. Schirrer, J. Baschnagel, Phys. Rev. E 85, 021808 (2012).

    Article  ADS  Google Scholar 

  56. S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci. Part B Polym. Phys. 44, 2951 (2006).

    Article  ADS  Google Scholar 

  57. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  MATH  Google Scholar 

  58. S. Frey, PhD Thesis, Université de Strasbourg, Strasbourg (2012) (available from http://www.sudoc.fr/165862653).

  59. J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005).

    ADS  Google Scholar 

  60. B.L. Holian, A.F. Voter, R. Ravelo, Phys. Rev. E 52, 2338 (1995).

    Article  ADS  Google Scholar 

  61. D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd edition (Academic Press, London, 2002).

  62. S. Melchionna, G. Ciccotti, B.L. Holian, Mol. Phys. 78, 533 (1993).

    Article  ADS  Google Scholar 

  63. W. Kob, J.L. Barrat, Eur. Phys. J. B 13, 319 (2000).

    Article  ADS  Google Scholar 

  64. G.B. McKenna, J. Phys.: Condens. Matter 15, S737 (2003).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Helfferich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helfferich, J. Renewal events in glass-forming liquids. Eur. Phys. J. E 37, 73 (2014). https://doi.org/10.1140/epje/i2014-14073-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14073-6

Keywords

Navigation